論文の概要: SPFFNet: Strip Perception and Feature Fusion Spatial Pyramid Pooling for Fabric Defect Detection
- arxiv url: http://arxiv.org/abs/2502.01445v2
- Date: Tue, 04 Feb 2025 03:25:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:24.074386
- Title: SPFFNet: Strip Perception and Feature Fusion Spatial Pyramid Pooling for Fabric Defect Detection
- Title(参考訳): SPFFNet:繊維欠陥検出のためのストリップ知覚と特徴融合空間ピラミッドポーリング
- Authors: Peizhe Zhao,
- Abstract要約: YOLOv11に基づくファブリック欠陥検出モデルを提案する。
SPM(Strip Perception Module)を導入し,マルチスケールのコンボリューションにより機能キャプチャを改善する。
また,適応重み付き共振器(FECIoU)の新たな拡張完全交叉法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Defect detection in fabrics is critical for quality control, yet existing methods often struggle with complex backgrounds and shape-specific defects. In this paper, we propose an improved fabric defect detection model based on YOLOv11. To enhance the detection of strip defects, we introduce a Strip Perception Module (SPM) that improves feature capture through multi-scale convolution. We further enhance the spatial pyramid pooling fast (SPPF) by integrating a squeeze-and-excitation mechanism, resulting in the SE-SPPF module, which better integrates spatial and channel information for more effective defect feature extraction. Additionally, we propose a novel focal enhanced complete intersection over union (FECIoU) metric with adaptive weights, addressing scale differences and class imbalance by adjusting the weights of hard-to-detect instances through focal loss. Experimental results demonstrate that our model achieves a 0.8-8.1% improvement in mean average precision (mAP) on the Tianchi dataset and a 1.6-13.2% improvement on our custom dataset, outperforming other state-of-the-art methods.
- Abstract(参考訳): ファブリックの欠陥検出は品質管理に不可欠であるが、既存の手法は複雑な背景や形状固有の欠陥に悩まされることが多い。
本稿では, YOLOv11に基づくファブリック欠陥検出モデルを提案する。
ストリップ欠陥の検出を強化するため,マルチスケールの畳み込みによる特徴捕獲を改善するStrip Perception Module (SPM)を導入する。
我々は、より効果的な欠陥特徴抽出のために、空間情報とチャネル情報をよりよく統合するSE-SPPFモジュールを生かして、空間ピラミッドプーリングの高速化(SPPF)をさらに進める。
さらに, 適応重み付き, スケール差やクラス不均衡に対処し, 焦点損失による重み付けを調整し, 適応重み付き集中型完全交叉法(FECIoU)を新たに提案する。
実験結果から,Tianchiデータセットの平均平均精度(mAP)が0.8~8.1%向上し,カスタムデータセットが1.6~13.2%向上し,他の最先端手法よりも優れた結果が得られた。
関連論文リスト
- DDNet: Deformable Convolution and Dense FPN for Surface Defect Detection in Recycled Books [13.223022246455077]
DDNetは、欠陥のローカライゼーションと分類を強化するために設計された革新的な検出モデルである。
リサイクルおよび再循環書籍における表面欠陥検出に特化して算出されたデータセットについて述べる。
DDNetは表面欠陥の正確な位置化と分類を行い、mAP値は46.7%である。
論文 参考訳(メタデータ) (2024-09-08T03:18:19Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
本稿では,エンコーダ・デコーダネットワークに基づく表面欠陥検出のための共同注意誘導型特徴融合ネットワーク(JAFFNet)を提案する。
JAFFNetは、主にJAFFモジュールをデコードステージに組み込んで、低レベルと高レベルの機能を適応的に融合させる。
SD- Saliency-900, Magnetic tile, and DAGM 2007 で行った実験から,本手法が他の最先端手法と比較して有望な性能を達成できたことが示唆された。
論文 参考訳(メタデータ) (2024-02-05T08:10:16Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
既存の手法では、計算コストのかかるコンテキストアグリゲーションが伴うか、ポリープの事前モデリングが欠如しているため、難解なケースでは性能が低下する。
本稿では,2段階のトレーニングとエンドツーエンド推論フレームワークである Enhanced CenterNet with Contrastive Learning (ECC-PolypDet) を提案する。
Box-assisted Contrastive Learning (BCL) は, クラス内差を最小限に抑え, 前庭ポリープと背景のクラス間差を最大化するため, 隠れポリープを捕捉する。
微調整段階におけるIoU誘導サンプル再重み付けの導入
論文 参考訳(メタデータ) (2024-01-10T07:03:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Bring Metric Functions into Diffusion Models [145.71911023514252]
DDPM(Denoising Diffusion Probabilistic Model)を改善するカスケード拡散モデル(Cas-DM)を導入する。
提案した拡散モデルバックボーンはLPIPS損失の有効利用を可能にし,最先端画像品質(FID, sFID, IS)を実現する。
実験結果から,提案した拡散モデルバックボーンはLPIPS損失の有効利用を可能にし,最新画像品質(FID, sFID, IS)につながることが示された。
論文 参考訳(メタデータ) (2024-01-04T18:55:01Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - AMSP-UOD: When Vortex Convolution and Stochastic Perturbation Meet
Underwater Object Detection [40.532331552038485]
AMSP-UOD(Amplitude-Modulated Perturbation and Vortex Convolutional Network)を提案する。
AMSP-UODは複雑な水中環境における非理想的撮像因子が検出精度に与える影響に対処する。
提案手法は,既存の最先端手法よりも精度とノイズ免疫の点で優れる。
論文 参考訳(メタデータ) (2023-08-23T05:03:45Z) - SEMI-DiffusionInst: A Diffusion Model Based Approach for Semiconductor
Defect Classification and Segmentation [0.11999555634662631]
この研究は拡散モデルを用いて半導体欠陥パターンを正確に検出し、正確にセグメント化する最初の実演である。
提案手法は,mAP全体のこれまでの成果よりも優れており,ほぼすべての欠陥クラスに対して比較的優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-17T17:53:36Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
本稿では,注目機構と特徴融合ネットワークを組み込んだYOLOv5-LWという軽量な木材パネル欠陥検出手法を提案する。
提案手法は92.8%の精度でパラメータ数を27.78%削減し,計算量を41.25%圧縮し,検出速度を10.16%向上させる。
論文 参考訳(メタデータ) (2023-06-21T08:55:45Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。