Learning to Partially Defer for Sequences
- URL: http://arxiv.org/abs/2502.01459v1
- Date: Mon, 03 Feb 2025 15:50:11 GMT
- Title: Learning to Partially Defer for Sequences
- Authors: Sahana Rayan, Ambuj Tewari,
- Abstract summary: We present an L2D setting for sequence outputs where the system can defer specific outputs of the whole model prediction to an expert.
We also empirically demonstrate that such granular deferrals achieve better cost-accuracy tradeoffs than whole deferrals on Traveling salesman solvers and News summarization models.
- Score: 17.98959620987217
- License:
- Abstract: In the Learning to Defer (L2D) framework, a prediction model can either make a prediction or defer it to an expert, as determined by a rejector. Current L2D methods train the rejector to decide whether to reject the entire prediction, which is not desirable when the model predicts long sequences. We present an L2D setting for sequence outputs where the system can defer specific outputs of the whole model prediction to an expert in an effort to interleave the expert and machine throughout the prediction. We propose two types of model-based post-hoc rejectors for pre-trained predictors: a token-level rejector, which defers specific token predictions to experts with next token prediction capabilities, and a one-time rejector for experts without such abilities, which defers the remaining sequence from a specific point onward. In the experiments, we also empirically demonstrate that such granular deferrals achieve better cost-accuracy tradeoffs than whole deferrals on Traveling salesman solvers and News summarization models.
Related papers
- Designing Decision Support Systems Using Counterfactual Prediction Sets [15.121082690769525]
Decision support systems for classification tasks are predominantly designed to predict the value of the ground truth labels.
This paper revisits the design of this type of systems from the perspective of online learning.
We develop a methodology that does not require, nor assumes, an expert model.
arXiv Detail & Related papers (2023-06-06T18:00:09Z) - Incorporating Experts' Judgment into Machine Learning Models [2.5363839239628843]
In some cases, domain experts might have a judgment about the expected outcome that might conflict with the prediction of machine learning models.
We present a novel framework that aims at leveraging experts' judgment to mitigate the conflict.
arXiv Detail & Related papers (2023-04-24T07:32:49Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level.
We develop simultaneous conformal inference to account for data-dependent miscoverage levels.
arXiv Detail & Related papers (2023-04-12T20:56:43Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts along with an estimation of their uncertainty.
Main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty.
In this work proof-of-concept model experiments are conducted to examine the performance of ANNs trained to predict a corrected state of the system and the state uncertainty using only a single deterministic forecast as input.
arXiv Detail & Related papers (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.