FALCON: Fine-grained Activation Manipulation by Contrastive Orthogonal Unalignment for Large Language Model
- URL: http://arxiv.org/abs/2502.01472v1
- Date: Mon, 03 Feb 2025 16:05:15 GMT
- Title: FALCON: Fine-grained Activation Manipulation by Contrastive Orthogonal Unalignment for Large Language Model
- Authors: Jinwei Hu, Zhenglin Huang, Xiangyu Yin, Wenjie Ruan, Guangliang Cheng, Yi Dong, Xiaowei Huang,
- Abstract summary: We propose Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON) as a representation-guided unlearning approach.
FALCON achieves superior unlearning effectiveness while maintaining model utility, exhibiting robust resistance against knowledge recovery attempts.
- Score: 23.69222300760814
- License:
- Abstract: Large language models have been widely applied, but can inadvertently encode sensitive or harmful information, raising significant safety concerns. Machine unlearning has emerged to alleviate this concern; however, existing training-time unlearning approaches, relying on coarse-grained loss combinations, have limitations in precisely separating knowledge and balancing removal effectiveness with model utility. In contrast, we propose Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON), a novel representation-guided unlearning approach that leverages information-theoretic guidance for efficient parameter selection, employs contrastive mechanisms to enhance representation separation, and projects conflict gradients onto orthogonal subspaces to resolve conflicts between forgetting and retention objectives. Extensive experiments demonstrate that FALCON achieves superior unlearning effectiveness while maintaining model utility, exhibiting robust resistance against knowledge recovery attempts.
Related papers
- SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised Contrastive Learning [0.0]
We introduce a novel anchor-free contrastive learning (L) method leveraging our proposed Similarity-Orthogonality (SimO) loss.
Our approach minimizes a semi-metric discriminative loss function that simultaneously optimize two key objectives.
We provide visualizations that demonstrate the impact of SimO loss on the embedding space.
arXiv Detail & Related papers (2024-10-07T17:41:10Z) - Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning [25.514007761856632]
graph contrastive learning (GCL) has received increasing attention in recommender systems due to its effectiveness in reducing bias caused by data sparsity.
We argue that these methods struggle to balance between semantic invariance and view hardness across the dynamic training process.
We propose a novel GCL-based recommendation framework RGCL, which effectively maintains the semantic invariance of contrastive pairs and dynamically adapts as the model capability evolves.
arXiv Detail & Related papers (2024-07-14T13:03:35Z) - Machine Unlearning with Minimal Gradient Dependence for High Unlearning Ratios [18.73206066109299]
Mini-Unlearning is a novel approach that capitalizes on a critical observation: unlearned parameters correlate with retrained parameters through contraction mapping.
This lightweight, scalable method significantly enhances model accuracy and strengthens resistance to membership inference attacks.
Our experiments demonstrate that Mini-Unlearning not only works under higher unlearning ratios but also outperforms existing techniques in both accuracy and security.
arXiv Detail & Related papers (2024-06-24T01:43:30Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - PointACL:Adversarial Contrastive Learning for Robust Point Clouds
Representation under Adversarial Attack [73.3371797787823]
Adversarial contrastive learning (ACL) is considered an effective way to improve the robustness of pre-trained models.
We present our robust aware loss function to train self-supervised contrastive learning framework adversarially.
We validate our method, PointACL on downstream tasks, including 3D classification and 3D segmentation with multiple datasets.
arXiv Detail & Related papers (2022-09-14T22:58:31Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - Fusion and Orthogonal Projection for Improved Face-Voice Association [15.938463726577128]
We study the problem of learning association between face and voice.
We propose a light-weight, plug-and-play mechanism that exploits the complementary cues in both modalities to form enriched fused embeddings.
arXiv Detail & Related papers (2021-12-20T12:33:33Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.