論文の概要: Generalization Error Analysis for Selective State-Space Models Through the Lens of Attention
- arxiv url: http://arxiv.org/abs/2502.01473v1
- Date: Mon, 03 Feb 2025 16:05:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:53.912327
- Title: Generalization Error Analysis for Selective State-Space Models Through the Lens of Attention
- Title(参考訳): 注意レンズによる選択状態空間モデルの一般化誤差解析
- Authors: Arya Honarpisheh, Mustafa Bozdag, Mario Sznaier, Octavia Camps,
- Abstract要約: ステートスペースモデル(State-space Model、SSM)は、トランスフォーマーの代替として登場した新しい基礎モデルである。
本稿では,MambaアーキテクチャとMamba-2アーキテクチャのコアコンポーネントである選択SSMの詳細な理論的解析を行う。
- 参考スコア(独自算出の注目度): 2.8998926117101367
- License:
- Abstract: State-space models (SSMs) are a new class of foundation models that have emerged as a compelling alternative to Transformers and their attention mechanisms for sequence processing tasks. This paper provides a detailed theoretical analysis of selective SSMs, the core components of the Mamba and Mamba-2 architectures. We leverage the connection between selective SSMs and the self-attention mechanism to highlight the fundamental similarities between these models. Building on this connection, we establish a length independent covering number-based generalization bound for selective SSMs, providing a deeper understanding of their theoretical performance guarantees. We analyze the effects of state matrix stability and input-dependent discretization, shedding light on the critical role played by these factors in the generalization capabilities of selective SSMs. Finally, we empirically demonstrate the sequence length independence of the derived bounds on two tasks.
- Abstract(参考訳): 状態空間モデル(SSM)は、トランスフォーマーの魅力的な代替品として登場した新しい基礎モデルのクラスであり、シーケンス処理タスクのアテンションメカニズムである。
本稿では,MambaアーキテクチャとMamba-2アーキテクチャのコアコンポーネントである選択SSMの詳細な理論的解析を行う。
選択的なSSMと自己認識機構の接続を利用して、これらのモデル間の基本的な類似点を明らかにする。
この接続に基づいて、選択的なSSMに対して有界な被覆数に基づく長独立一般化を確立し、それらの理論的性能保証についてより深く理解する。
我々は、状態行列安定性と入力依存離散化の影響を解析し、選択SSMの一般化能力においてこれらの因子が果たす重要な役割について光を遮蔽する。
最後に、2つのタスクで導出した境界のシーケンス長独立性を実証的に示す。
関連論文リスト
- SeRpEnt: Selective Resampling for Expressive State Space Models [5.7918134313332414]
状態空間モデル(SSM)は、最近、シークエンスモデリングのディープラーニング分野において注目されている。
我々は,マンバにおける選択時間間隔が情報の線形近似器として機能することを示す。
我々は、情報認識方式でシーケンスを圧縮するための選択性をさらに活用するSSMであるSeRpEntアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-01-20T20:27:50Z) - Understanding and Mitigating Bottlenecks of State Space Models through the Lens of Recency and Over-smoothing [56.66469232740998]
構造化状態空間モデル (Structured State Space Models, SSMs) は, 強い相対バイアスによって本質的に制限されていることを示す。
このバイアスにより、モデルが遠方の情報を思い出す能力が損なわれ、堅牢性の問題がもたらされる。
本研究では, 状態遷移行列の2つのチャネルをSSMで分極し, それぞれ0と1に設定し, 電流バイアスと過平滑化に同時に対処することを提案する。
論文 参考訳(メタデータ) (2024-12-31T22:06:39Z) - On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages [56.22289522687125]
SSM(Selective State-space Model)はTransformerの代替品である。
正規言語タスクにおける表現性や長さの一般化性能を解析する。
本稿では,Selective Dense State-Space Model (SD-SSM)を紹介する。
論文 参考訳(メタデータ) (2024-12-26T20:53:04Z) - Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models [14.932318540666547]
状態空間モデル(SSM)パラメータを初期化する現在の手法は、HiPPOフレームワークに依存している。
入力シーケンスの自己相関を考慮し、SSMスキームの役割を更に検討する。
SSM状態行列の固有値の虚部がSSM最適化問題の条件付けを決定することを示す。
論文 参考訳(メタデータ) (2024-11-29T03:55:19Z) - Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective [0.0]
BERTやGPTのようなトランスフォーマーベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
本稿では,これらのプール機構が文レベル感情分析の文脈における2つの著名なLCMファミリー(BERTとGPT)に与える影響について検討する。
論文 参考訳(メタデータ) (2024-11-22T00:59:25Z) - Provable Benefits of Complex Parameterizations for Structured State Space Models [51.90574950170374]
構造化状態空間モデル (Structured State Space Model, SSM) は、指定された構造に固執する線形力学系である。
パラメータ化が現実の典型的なニューラルネットワークモジュールとは対照的に、SSMは複雑なパラメータ化を使用することが多い。
本稿では,実対角 SSM と複素対角 SSM の形式的ギャップを確立することにより,SSM の複雑なパラメータ化の利点を説明する。
論文 参考訳(メタデータ) (2024-10-17T22:35:50Z) - Enhanced Structured State Space Models via Grouped FIR Filtering and Attention Sink Mechanisms [0.6718184400443239]
本稿では,A-乗算を複数のグループに分解することで課題を軽減する高度なアーキテクチャを提案する。
ストリーミング言語モデルで特定される「アテンションシンク」現象にインスパイアされ、モデルの安定性と性能を高めるための同様のメカニズムを組み込んだ。
論文 参考訳(メタデータ) (2024-08-01T02:49:58Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-06-12T12:12:38Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - Understanding Best Subset Selection: A Tale of Two C(omplex)ities [25.665534614984647]
高次元スパース線形回帰設定における最適部分集合選択の変数選択特性について検討する。
識別可能性マージンとは別に、以下の2つの複雑さ尺度はモデル整合性のマージン条件を特徴づける上で基本的な役割を果たす。
論文 参考訳(メタデータ) (2023-01-16T04:52:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。