論文の概要: Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models
- arxiv url: http://arxiv.org/abs/2411.19455v1
- Date: Fri, 29 Nov 2024 03:55:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:25.083475
- Title: Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models
- Title(参考訳): 自己相関問題:状態空間モデルにおける初期化スキームの役割を理解する
- Authors: Fusheng Liu, Qianxiao Li,
- Abstract要約: 状態空間モデル(SSM)パラメータを初期化する現在の手法は、HiPPOフレームワークに依存している。
入力シーケンスの自己相関を考慮し、SSMスキームの役割を更に検討する。
SSM状態行列の固有値の虚部がSSM最適化問題の条件付けを決定することを示す。
- 参考スコア(独自算出の注目度): 14.932318540666547
- License:
- Abstract: Current methods for initializing state space model (SSM) parameters primarily rely on the HiPPO framework \citep{gu2023how}, which is based on online function approximation with the SSM kernel basis. However, the HiPPO framework does not explicitly account for the effects of the temporal structures of input sequences on the optimization of SSMs. In this paper, we take a further step to investigate the roles of SSM initialization schemes by considering the autocorrelation of input sequences. Specifically, we: (1) rigorously characterize the dependency of the SSM timescale on sequence length based on sequence autocorrelation; (2) find that with a proper timescale, allowing a zero real part for the eigenvalues of the SSM state matrix mitigates the curse of memory while still maintaining stability at initialization; (3) show that the imaginary part of the eigenvalues of the SSM state matrix determines the conditioning of SSM optimization problems, and uncover an approximation-estimation tradeoff when training SSMs with a specific class of target functions.
- Abstract(参考訳): 状態空間モデル(SSM)パラメータを初期化する現在の手法は、主に、SSMカーネルベースのオンライン関数近似に基づくHiPPOフレームワーク \citep{gu2023how} に依存している。
しかし、HiPPOフレームワークは、入力シーケンスの時間構造がSSMの最適化に与える影響を明示的に説明していない。
本稿では、入力シーケンスの自己相関を考慮し、SSM初期化スキームの役割を更に検討する。
具体的には,(1)シーケンス自己相関に基づくシーケンス長によるSSMタイムスケールの依存性を厳格に評価し,(2)SSM状態行列の固有値のゼロ実部が初期化時の安定性を維持しつつ記憶の呪いを軽減し,(3)SSM状態行列の固有値の虚部がSSM最適化問題の条件付けを決定し,目標関数の特定のクラスでSSMを訓練する際の近似-推定トレードオフを明らかにする。
関連論文リスト
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
継続的学習は、AIモデルに時間とともに一連のタスクを学習する能力を持たせることを目的としている。
ステートスペースモデル(SSM)はコンピュータビジョンにおいて顕著な成功を収めた。
大規模マンバ基礎モデルのコアSSMを連続的に微調整するフレームワークであるMamba-CLを紹介する。
論文 参考訳(メタデータ) (2024-11-23T06:36:16Z) - Provable Benefits of Complex Parameterizations for Structured State Space Models [51.90574950170374]
構造化状態空間モデル (Structured State Space Model, SSM) は、指定された構造に固執する線形力学系である。
パラメータ化が現実の典型的なニューラルネットワークモジュールとは対照的に、SSMは複雑なパラメータ化を使用することが多い。
本稿では,実対角 SSM と複素対角 SSM の形式的ギャップを確立することにより,SSM の複雑なパラメータ化の利点を説明する。
論文 参考訳(メタデータ) (2024-10-17T22:35:50Z) - Mathematical Formalism for Memory Compression in Selective State Space Models [0.0]
状態空間モデル(SSM)は、シーケンスデータの長距離依存性をモデル化するための強力なフレームワークとして登場した。
我々は、選択状態空間モデルにおけるメモリ圧縮を理解するための厳密な数学的枠組みを開発する。
選択型SSMは従来のRNNモデルと比較してメモリ効率と処理速度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-10-04T05:45:48Z) - HiPPO-Prophecy: State-Space Models can Provably Learn Dynamical Systems in Context [0.5416466085090772]
本研究では、状態空間モデル(SSM)の文脈内学習能力について検討する。
我々はSSMの新たな重み構造を導入し、任意の力学系の次の状態を予測できるようにした。
我々は、連続SSMが任意の入力信号の微分を近似できることを示すために、HiPPOフレームワークを拡張した。
論文 参考訳(メタデータ) (2024-07-12T15:56:11Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
本稿では,状態空間モデルを短時間の畳み込みに置き換えたCHELAを提案する。
提案手法の有効性を示すために,Long Range Arenaベンチマークと言語モデリングタスクについて実験を行った。
論文 参考訳(メタデータ) (2024-06-12T12:12:38Z) - SMR: State Memory Replay for Long Sequence Modeling [19.755738298836526]
本稿では並列畳み込み計算における互換性の限界を克服する新しい非再帰的非一様サンプル処理戦略を提案する。
本研究では,学習可能な記憶を利用する状態記憶再生(SMR)を導入し,学習データと異なるサンプリングポイントでの一般化のために,現在の状態を多段階情報で調整する。
自己回帰言語モデリングとLong Range Arenaにおける長距離モデリングタスクの実験は、一連のSSMモデルに対するSMRメカニズムの一般的な効果を実証している。
論文 参考訳(メタデータ) (2024-05-27T17:53:32Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
線形時間不変(LTI)システムを利用する状態空間モデル(SSM)は、長いシーケンスの学習において有効であることが知られている。
我々は,ハンケル作用素内のマルコフパラメータを利用するLTIシステムに対して,HOPEと呼ばれる新しいパラメータ化手法を開発した。
我々の新しいパラメータ化は、固定時間ウィンドウ内に非遅延メモリを付与し、パッドドノイズのあるシーケンシャルCIFAR-10タスクによって実証的に相関する。
論文 参考訳(メタデータ) (2024-05-22T20:20:14Z) - From Generalization Analysis to Optimization Designs for State Space Models [14.932318540666547]
状態空間モデル (SSM) は時系列解析の基礎モデルである。
一般化結果に基づく学習アルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2024-05-04T13:58:03Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
論文 参考訳(メタデータ) (2020-02-28T00:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。