Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning
- URL: http://arxiv.org/abs/2502.01495v1
- Date: Mon, 03 Feb 2025 16:28:44 GMT
- Title: Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning
- Authors: Joshua Rosaler, Luca Candelori, Vahagn Kirakosyan, Kharen Musaelian, Ryan Samson, Martin T. Wells, Dhagash Mehta, Stefano Pasquali,
- Abstract summary: We investigate the application of quantum cognition machine learning (QCML) to distance metric learning in corporate bond markets.
We show that QCML outperforms classical tree-based models in high-yield (HY) markets, while giving comparable or better performance in investment grade (IG) markets.
- Score: 0.8706730566331037
- License:
- Abstract: We investigate the application of quantum cognition machine learning (QCML), a novel paradigm for both supervised and unsupervised learning tasks rooted in the mathematical formalism of quantum theory, to distance metric learning in corporate bond markets. Compared to equities, corporate bonds are relatively illiquid and both trade and quote data in these securities are relatively sparse. Thus, a measure of distance/similarity among corporate bonds is particularly useful for a variety of practical applications in the trading of illiquid bonds, including the identification of similar tradable alternatives, pricing securities with relatively few recent quotes or trades, and explaining the predictions and performance of ML models based on their training data. Previous research has explored supervised similarity learning based on classical tree-based models in this context; here, we explore the application of the QCML paradigm for supervised distance metric learning in the same context, showing that it outperforms classical tree-based models in high-yield (HY) markets, while giving comparable or better performance (depending on the evaluation metric) in investment grade (IG) markets.
Related papers
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.
We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis [89.60263788590893]
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression.
Existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth.
arXiv Detail & Related papers (2025-02-18T07:35:35Z) - Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting [22.086070375026303]
We propose Universal multi-level Market Irrationality factor model to enhance stock return forecasting.
The UMI model learns factors that can reflect irrational behaviors in market from both individual stock and overall market levels.
arXiv Detail & Related papers (2025-02-07T08:10:24Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression.
Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset.
This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
arXiv Detail & Related papers (2024-08-13T04:53:31Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
This work applies to the Irish balancing market a variety of price prediction techniques proven successful in the widely studied day-ahead market.
We compare statistical, machine learning, and deep learning models using a framework that investigates the impact of different training sizes.
An extensive numerical study shows that well-performing models in the day-ahead market do not perform well in the balancing one.
arXiv Detail & Related papers (2024-02-09T15:18:00Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
We empirically investigate knowledge transfer from larger to smaller models through a parametric perspective.
We employ sensitivity-based techniques to extract and align knowledge-specific parameters between different large language models.
Our findings highlight the critical factors contributing to the process of parametric knowledge transfer.
arXiv Detail & Related papers (2023-10-17T17:58:34Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Measuring Financial Time Series Similarity With a View to Identifying
Profitable Stock Market Opportunities [12.101446195463591]
We describe a case-based reasoning approach to predicting stock market returns using only historical pricing data.
A key contribution of this work is the development of a novel similarity metric for comparing historical pricing data.
arXiv Detail & Related papers (2021-07-07T17:26:32Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.