Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting
- URL: http://arxiv.org/abs/2502.04737v1
- Date: Fri, 07 Feb 2025 08:10:24 GMT
- Title: Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting
- Authors: Chen Yang, Jingyuan Wang, Xiaohan Jiang, Junjie Wu,
- Abstract summary: We propose Universal multi-level Market Irrationality factor model to enhance stock return forecasting.
The UMI model learns factors that can reflect irrational behaviors in market from both individual stock and overall market levels.
- Score: 22.086070375026303
- License:
- Abstract: Recent years have witnessed the perfect encounter of deep learning and quantitative trading has achieved great success in stock investment. Numerous deep learning-based models have been developed for forecasting stock returns, leveraging the powerful representation capabilities of neural networks to identify patterns and factors influencing stock prices. These models can effectively capture general patterns in the market, such as stock price trends, volume-price relationships, and time variations. However, the impact of special irrationality factors -- such as market sentiment, speculative behavior, market manipulation, and psychological biases -- have not been fully considered in existing deep stock forecasting models due to their relative abstraction as well as lack of explicit labels and data description. To fill this gap, we propose UMI, a Universal multi-level Market Irrationality factor model to enhance stock return forecasting. The UMI model learns factors that can reflect irrational behaviors in market from both individual stock and overall market levels. For the stock-level, UMI construct an estimated rational price for each stock, which is cointegrated with the stock's actual price. The discrepancy between the actual and the rational prices serves as a factor to indicate stock-level irrational events. Additionally, we define market-level irrational behaviors as anomalous synchronous fluctuations of stocks within a market. Using two self-supervised representation learning tasks, i.e., sub-market comparative learning and market synchronism prediction, the UMI model incorporates market-level irrationalities into a market representation vector, which is then used as the market-level irrationality factor.
Related papers
- Predicting Bitcoin Market Trends with Enhanced Technical Indicator Integration and Classification Models [6.39158540499473]
This study presents a machine learning model based on classification to forecast the direction of the cryptocurrency market.
It is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and Bollinger Bands.
The results show a buy/sell signal accuracy of over 92%.
arXiv Detail & Related papers (2024-10-09T14:29:50Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks [3.7608255115473592]
This paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network.
Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and abrupt events.
Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets.
arXiv Detail & Related papers (2023-11-23T04:33:47Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Beating the market with a bad predictive model [0.0]
We prove that it is generally possible to make systematic profits with a completely inferior price-predicting model.
The key idea is to alter the training objective of the predictive models to explicitly decorrelate them from the market.
arXiv Detail & Related papers (2020-10-23T16:20:35Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.