LLM-TA: An LLM-Enhanced Thematic Analysis Pipeline for Transcripts from Parents of Children with Congenital Heart Disease
- URL: http://arxiv.org/abs/2502.01620v1
- Date: Mon, 03 Feb 2025 18:51:46 GMT
- Title: LLM-TA: An LLM-Enhanced Thematic Analysis Pipeline for Transcripts from Parents of Children with Congenital Heart Disease
- Authors: Muhammad Zain Raza, Jiawei Xu, Terence Lim, Lily Boddy, Carlos M. Mery, Andrew Well, Ying Ding,
- Abstract summary: Thematic Analysis (TA) is resource-intensive and difficult to scale for large, complex datasets.
This study investigates the potential of large language models (LLMs) to augment the inductive TA process in high-stakes healthcare settings.
- Score: 4.726383091092747
- License:
- Abstract: Thematic Analysis (TA) is a fundamental method in healthcare research for analyzing transcript data, but it is resource-intensive and difficult to scale for large, complex datasets. This study investigates the potential of large language models (LLMs) to augment the inductive TA process in high-stakes healthcare settings. Focusing on interview transcripts from parents of children with Anomalous Aortic Origin of a Coronary Artery (AAOCA), a rare congenital heart disease, we propose an LLM-Enhanced Thematic Analysis (LLM-TA) pipeline. Our pipeline integrates an affordable state-of-the-art LLM (GPT-4o mini), LangChain, and prompt engineering with chunking techniques to analyze nine detailed transcripts following the inductive TA framework. We evaluate the LLM-generated themes against human-generated results using thematic similarity metrics, LLM-assisted assessments, and expert reviews. Results demonstrate that our pipeline outperforms existing LLM-assisted TA methods significantly. While the pipeline alone has not yet reached human-level quality in inductive TA, it shows great potential to improve scalability, efficiency, and accuracy while reducing analyst workload when working collaboratively with domain experts. We provide practical recommendations for incorporating LLMs into high-stakes TA workflows and emphasize the importance of close collaboration with domain experts to address challenges related to real-world applicability and dataset complexity. https://github.com/jiaweixu98/LLM-TA
Related papers
- An LLM-Powered Agent for Physiological Data Analysis: A Case Study on PPG-based Heart Rate Estimation [2.0195680688695594]
We develop an LLM-powered agent for physiological time-series analysis.
Built on the OpenCHA framework, our agent features an orchestrator that integrates user interaction, data sources, and analytical tools.
Results demonstrate that our agent significantly outperforms benchmark models by achieving lower error rates and more reliable HR estimations.
arXiv Detail & Related papers (2025-02-18T13:09:59Z) - Evaluating LLM Abilities to Understand Tabular Electronic Health Records: A Comprehensive Study of Patient Data Extraction and Retrieval [1.986227187900497]
We conduct experiments using the MIMIC dataset to explore the impact of the prompt structure, instruction, context, and demonstration.
Our findings show that optimal feature selection and serialization methods can enhance task performance by up to 26.79%.
In-context learning setups with relevant example selection improve data extraction performance by 5.95%.
arXiv Detail & Related papers (2025-01-16T08:52:50Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We develop a novel method for zero-shot/few-shot in-context learning (ICL) using a multi-layered structured prompt.
We also explore the efficacy of two communication styles between the user and Large Language Models (LLMs)
Our study systematically evaluates the diagnostic accuracy and risk factors, including gender bias and false negative rates.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
We evaluate the ability of large language models (LLMs) to infer causal relations from natural language.
LLMs show competitive performance in a benchmark of pairwise relations without needing (explicit) training samples.
We extend our approach to extrapolating causal graphs through iterated pairwise queries.
arXiv Detail & Related papers (2023-12-22T13:14:38Z) - Retrieving Evidence from EHRs with LLMs: Possibilities and Challenges [18.56314471146199]
Large volume of notes often associated with patients together with time constraints renders manually identifying relevant evidence practically infeasible.
We propose and evaluate a zero-shot strategy for using LLMs as a mechanism to efficiently retrieve and summarize unstructured evidence in patient EHR.
arXiv Detail & Related papers (2023-09-08T18:44:47Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.