Can Frontier LLMs Replace Annotators in Biomedical Text Mining? Analyzing Challenges and Exploring Solutions
- URL: http://arxiv.org/abs/2503.03261v1
- Date: Wed, 05 Mar 2025 08:37:10 GMT
- Title: Can Frontier LLMs Replace Annotators in Biomedical Text Mining? Analyzing Challenges and Exploring Solutions
- Authors: Yichong Zhao, Susumu Goto,
- Abstract summary: Large language models (LLMs) can perform various natural language processing (NLP) tasks through in-context learning without relying on supervised data.<n>We identify three primary challenges for LLMs in biomedical corpora.<n>Our findings show that frontier LLMs can approach or surpass the performance of state-of-the-art (SOTA) BERT-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can perform various natural language processing (NLP) tasks through in-context learning without relying on supervised data. However, multiple previous studies have reported suboptimal performance of LLMs in biological text mining. By analyzing failure patterns in these evaluations, we identified three primary challenges for LLMs in biomedical corpora: (1) LLMs fail to learn implicit dataset-specific nuances from supervised data, (2) The common formatting requirements of discriminative tasks limit the reasoning capabilities of LLMs particularly for LLMs that lack test-time compute, and (3) LLMs struggle to adhere to annotation guidelines and match exact schemas, which hinders their ability to understand detailed annotation requirements which is essential in biomedical annotation workflow. To address these challenges, we experimented with prompt engineering techniques targeted to the above issues, and developed a pipeline that dynamically extracts instructions from annotation guidelines. Our findings show that frontier LLMs can approach or surpass the performance of state-of-the-art (SOTA) BERT-based models with minimal reliance on manually annotated data and without fine-tuning. Furthermore, we performed model distillation on a closed-source LLM, demonstrating that a BERT model trained exclusively on synthetic data annotated by LLMs can also achieve a practical performance. Based on these results, we explored the feasibility of partially replacing manual annotation with LLMs in production scenarios for biomedical text mining.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
Large Language Models (LLMs) provide a cost-effective and efficient alternative to human annotation.
This paper introduces the SILICON" (Systematic Inference with LLMs for Information Classification and Notation) workflow.
The workflow integrates established principles of human annotation with systematic prompt optimization and model selection.
arXiv Detail & Related papers (2024-12-19T02:21:41Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
Large Language Models (LLMs) tend to produce inaccurate responses to specific queries.
We construct an adversarial dataset, named as $textbfADT (Adrial dataset for Tokenizer)$ to challenge LLMs' tokenization.
Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Qwen2.5-max and so on.
arXiv Detail & Related papers (2024-05-27T11:39:59Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.<n>It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.