論文の概要: MFP-VTON: Enhancing Mask-Free Person-to-Person Virtual Try-On via Diffusion Transformer
- arxiv url: http://arxiv.org/abs/2502.01626v1
- Date: Mon, 03 Feb 2025 18:56:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:13.751474
- Title: MFP-VTON: Enhancing Mask-Free Person-to-Person Virtual Try-On via Diffusion Transformer
- Title(参考訳): MFP-VTON:拡散変換器によるマスクフリーのバーチャルトライオンの実現
- Authors: Le Shen, Yanting Kang, Rong Huang, Zhijie Wang,
- Abstract要約: Garment-to-person virtual try-on (VTON) は、基準服を着用している人の適合した画像を生成することを目的としている。
そこで我々はPerson-to-Person VTONのためのMask-Freeフレームワークを提案する。
我々のモデルは、人・人・物の両方のVTONタスクに優れ、高忠実度適合画像を生成する。
- 参考スコア(独自算出の注目度): 5.844515709826269
- License:
- Abstract: The garment-to-person virtual try-on (VTON) task, which aims to generate fitting images of a person wearing a reference garment, has made significant strides. However, obtaining a standard garment is often more challenging than using the garment already worn by the person. To improve ease of use, we propose MFP-VTON, a Mask-Free framework for Person-to-Person VTON. Recognizing the scarcity of person-to-person data, we adapt a garment-to-person model and dataset to construct a specialized dataset for this task. Our approach builds upon a pretrained diffusion transformer, leveraging its strong generative capabilities. During mask-free model fine-tuning, we introduce a Focus Attention loss to emphasize the garment of the reference person and the details outside the garment of the target person. Experimental results demonstrate that our model excels in both person-to-person and garment-to-person VTON tasks, generating high-fidelity fitting images.
- Abstract(参考訳): VTONタスクは、基準服を着用している人の適合した画像を生成することを目的としており、大きな進歩を遂げている。
ただし、着用者が着用している服よりも、標準服の入手が難しい場合が多い。
使いやすさを向上させるために,Person-to-Person VTONのためのマスクフリーフレームワークであるMFP-VTONを提案する。
個人間データの不足を認識して、衣服間モデルとデータセットを適用して、このタスクのための特別なデータセットを構築する。
我々のアプローチは、その強力な生成能力を活用して、事前訓練された拡散変換器の上に構築される。
マスクレスモデルファインタニングにおいて,対象者の衣服と,対象者の衣服の外の細部を強調するために,焦点注意損失を導入する。
実験結果から,本モデルは人・人双方のVTONタスクに優れ,忠実度の高い画像を生成することがわかった。
関連論文リスト
- Try-On-Adapter: A Simple and Flexible Try-On Paradigm [42.2724473500475]
オンラインショッピングで広く使われている画像ベースの仮想試着は、特定の衣服に着飾った自然な服装の人のイメージを作成することを目的としている。
従来の手法では、元のモデルの立像の特定の部分をマスキングし、マスクされた領域に塗布することで、対応する参照服を身に着けたモデルのリアルなイメージを生成する。
本稿では,既存の塗装パラダイムと異なる塗装パラダイムであるトライオンアダプタ(TOA)を提案する。
論文 参考訳(メタデータ) (2024-11-15T13:35:58Z) - FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on [73.13242624924814]
Diffusion Transformer (DiT) を用いた高忠実度仮想試行用ガーメント知覚増強技術FitDiT
布地テクスチャ抽出装置を導入し, 布地や模様, テクスチャなどのリッチな細部を, よりよく捉えられるようにした。
また,クロスカテゴリー試着中にマスク領域全体を埋める衣服の発生を防止し,衣料の正しい長さに適応する拡張緩和マスク戦略を採用した。
論文 参考訳(メタデータ) (2024-11-15T11:02:23Z) - Improving Virtual Try-On with Garment-focused Diffusion Models [91.95830983115474]
拡散モデルは多くの画像合成タスクにおける生成的モデリングの革新をもたらした。
私たちは新しい拡散モデル、すなわちGarDiffを作り、衣服中心の拡散プロセスを引き起こします。
VITON-HDおよびDressCodeデータセットの実験は、最先端のVTONアプローチと比較して、GarDiffの優位性を示している。
論文 参考訳(メタデータ) (2024-09-12T17:55:11Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1は、固定された衣服とオプション条件で自由に編集可能な人間の画像を生成する仮想ドレッシングタスクである。
IMAGDressing-v1は、CLIPのセマンティック特徴とVAEのテクスチャ特徴をキャプチャする衣料UNetを組み込んでいる。
本稿では,凍結自己注意とトレーニング可能なクロスアテンションを含むハイブリッドアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:26:30Z) - MV-VTON: Multi-View Virtual Try-On with Diffusion Models [91.71150387151042]
画像ベースの仮想試着の目的は、与えられた衣服を自然に身に着けている対象者の画像を生成することである。
既存の方法は、前頭服を用いた正面試着のみに焦点をあてる方法である。
本稿では,服の複数ビューからドレッシング結果を再構築することを目的としたMulti-View Virtual Try-ON(MV-VTON)を紹介する。
論文 参考訳(メタデータ) (2024-04-26T12:27:57Z) - Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On [29.217423805933727]
拡散モデルに基づくアプローチは,画像合成タスクに優れており,近年普及している。
本稿では,仮想試行のためのテクスチャ保存拡散(TPD)モデルを提案する。
第2に,被写体と参照衣料画像に基づいて,正確な塗布マスクを推定する拡散に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T12:43:22Z) - PFDM: Parser-Free Virtual Try-on via Diffusion Model [28.202996582963184]
拡散モデル(PFDM)に基づく自由仮想試行法を提案する。
2つの画像が与えられた場合、PFDMは、他の情報なしで暗黙的にワープすることで、標的人物の衣服をシームレスに「着る」ことができる。
実験により,提案したPFDMは複雑な画像の処理に成功し,最先端の最先端モデルと高忠実度モデルの両方より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-05T14:32:57Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - StableVITON: Learning Semantic Correspondence with Latent Diffusion
Model for Virtual Try-On [35.227896906556026]
衣服画像と人物画像が与えられた場合、画像ベースの仮想試行は、衣服画像の特徴を自然に正確に反映した、カスタマイズされた画像を生成することを目的としている。
本研究では,事前学習した拡散モデルの適用性を拡張し,仮想試行作業に独立して利用できるようにすることを目的とする。
提案するゼロ・クロスアテンションブロックは, 意味的対応を学習することで衣服の細部を保存できるだけでなく, ワープ過程における事前学習モデル固有の知識を利用して高忠実度画像を生成する。
論文 参考訳(メタデータ) (2023-12-04T08:27:59Z) - Towards Scalable Unpaired Virtual Try-On via Patch-Routed
Spatially-Adaptive GAN [66.3650689395967]
本稿では,現実世界の仮想試行を支援するテクスチャ保存型終末ネットワークであるPAtch-routed SpaTially-Adaptive GAN (PASTA-GAN)を提案する。
PASTA-GANは、各衣服のスタイルと空間情報をアンタングルするために、革新的なパッチを外したアンタングルモジュールで構成されている。
論文 参考訳(メタデータ) (2021-11-20T08:36:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。