Leveraging Stable Diffusion for Monocular Depth Estimation via Image Semantic Encoding
- URL: http://arxiv.org/abs/2502.01666v1
- Date: Sat, 01 Feb 2025 15:37:22 GMT
- Title: Leveraging Stable Diffusion for Monocular Depth Estimation via Image Semantic Encoding
- Authors: Jingming Xia, Guanqun Cao, Guang Ma, Yiben Luo, Qinzhao Li, John Oyekan,
- Abstract summary: We propose a novel image-based semantic embedding that extracts contextual information directly from visual features.
Our method achieves performance comparable to state-of-the-art models while addressing the shortcomings of CLIP embeddings in handling outdoor scenes.
- Score: 1.0445560141983634
- License:
- Abstract: Monocular depth estimation involves predicting depth from a single RGB image and plays a crucial role in applications such as autonomous driving, robotic navigation, 3D reconstruction, etc. Recent advancements in learning-based methods have significantly improved depth estimation performance. Generative models, particularly Stable Diffusion, have shown remarkable potential in recovering fine details and reconstructing missing regions through large-scale training on diverse datasets. However, models like CLIP, which rely on textual embeddings, face limitations in complex outdoor environments where rich context information is needed. These limitations reduce their effectiveness in such challenging scenarios. Here, we propose a novel image-based semantic embedding that extracts contextual information directly from visual features, significantly improving depth prediction in complex environments. Evaluated on the KITTI and Waymo datasets, our method achieves performance comparable to state-of-the-art models while addressing the shortcomings of CLIP embeddings in handling outdoor scenes. By leveraging visual semantics directly, our method demonstrates enhanced robustness and adaptability in depth estimation tasks, showcasing its potential for application to other visual perception tasks.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - Structure-Centric Robust Monocular Depth Estimation via Knowledge Distillation [9.032563775151074]
Monocular depth estimation is a key technique for 3D perception in computer vision.
It faces significant challenges in real-world scenarios, which encompass adverse weather variations, motion blur, as well as scenes with poor lighting conditions at night.
We devise a novel approach to reduce over-reliance on local textures, enhancing robustness against missing or interfering patterns.
arXiv Detail & Related papers (2024-10-09T15:20:29Z) - Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions [30.148969711689773]
We present a novel approach designed to address the complexities posed by challenging, out-of-distribution data in the single-image depth estimation task.
We systematically generate new, user-defined scenes with a comprehensive set of challenges and associated depth information.
This is achieved by leveraging cutting-edge text-to-image diffusion models with depth-aware control.
arXiv Detail & Related papers (2024-07-23T17:59:59Z) - Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations [6.113035634680655]
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
arXiv Detail & Related papers (2024-07-17T11:51:52Z) - Depth-aware Volume Attention for Texture-less Stereo Matching [67.46404479356896]
We propose a lightweight volume refinement scheme to tackle the texture deterioration in practical outdoor scenarios.
We introduce a depth volume supervised by the ground-truth depth map, capturing the relative hierarchy of image texture.
Local fine structure and context are emphasized to mitigate ambiguity and redundancy during volume aggregation.
arXiv Detail & Related papers (2024-02-14T04:07:44Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - Monocular Depth Estimation Using Cues Inspired by Biological Vision
Systems [22.539300644593936]
Monocular depth estimation (MDE) aims to transform an RGB image of a scene into a pixelwise depth map from the same camera view.
Part of the MDE task is to learn which visual cues in the image can be used for depth estimation, and how.
We demonstrate that explicitly injecting visual cue information into the model is beneficial for depth estimation.
arXiv Detail & Related papers (2022-04-21T19:42:36Z) - A Deeper Look into DeepCap [96.67706102518238]
We propose a novel deep learning approach for monocular dense human performance capture.
Our method is trained in a weakly supervised manner based on multi-view supervision.
Our approach outperforms the state of the art in terms of quality and robustness.
arXiv Detail & Related papers (2021-11-20T11:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.