Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
- URL: http://arxiv.org/abs/2407.12511v1
- Date: Wed, 17 Jul 2024 11:51:52 GMT
- Title: Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
- Authors: Tomáš Chobola, Yu Liu, Hanyi Zhang, Julia A. Schnabel, Tingying Peng,
- Abstract summary: Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
- Score: 6.113035634680655
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current deep learning-based low-light image enhancement methods often struggle with high-resolution images, and fail to meet the practical demands of visual perception across diverse and unseen scenarios. In this paper, we introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component, conditioned on local context. We propose a reconstruction of enhanced-light images within the HSV space utilizing an implicit neural function combined with an embedded guided filter, thereby significantly reducing computational overhead. Moreover, we introduce a single image-based training loss function to enhance the model's adaptability to various scenes, further enhancing its practical applicability. Through rigorous evaluations, we analyze the properties of our proposed framework, demonstrating its superiority in both image quality and scene adaptability. Furthermore, our evaluation extends to applications in downstream tasks within low-light scenarios, underscoring the practical utility of CoLIE. The source code is available at https://github.com/ctom2/colie.
Related papers
- Leveraging Stable Diffusion for Monocular Depth Estimation via Image Semantic Encoding [1.0445560141983634]
We propose a novel image-based semantic embedding that extracts contextual information directly from visual features.
Our method achieves performance comparable to state-of-the-art models while addressing the shortcomings of CLIP embeddings in handling outdoor scenes.
arXiv Detail & Related papers (2025-02-01T15:37:22Z) - Leveraging Content and Context Cues for Low-Light Image Enhancement [25.97198463881292]
Low-light conditions have an adverse impact on machine cognition, limiting the performance of computer vision systems in real life.
We propose to improve the existing zero-reference low-light enhancement by leveraging the CLIP model to capture image prior and for semantic guidance.
We experimentally show, that the proposed prior and semantic guidance help to improve the overall image contrast and hue, as well as improve background-foreground discrimination.
arXiv Detail & Related papers (2024-12-10T17:32:09Z) - HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning [62.264673293638175]
Existing underwater image enhancement methods primarily focus on improving visual quality while overlooking practical implications.
We propose a invertible network for underwater perception enhancement, dubbed H, which enhances visual quality and demonstrates flexibility in handling other downstream tasks.
arXiv Detail & Related papers (2024-11-27T12:37:03Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
A typical framework is to simultaneously estimate the illumination and reflectance, but they disregard the scene-level contextual information encapsulated in feature spaces.
We develop a new context-sensitive decomposition network architecture to exploit the scene-level contextual dependencies on spatial scales.
We develop a lightweight CSDNet (named LiteCSDNet) by reducing the number of channels.
arXiv Detail & Related papers (2021-12-09T06:25:30Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.