Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
- URL: http://arxiv.org/abs/2407.12511v1
- Date: Wed, 17 Jul 2024 11:51:52 GMT
- Title: Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
- Authors: Tomáš Chobola, Yu Liu, Hanyi Zhang, Julia A. Schnabel, Tingying Peng,
- Abstract summary: Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
- Score: 6.113035634680655
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current deep learning-based low-light image enhancement methods often struggle with high-resolution images, and fail to meet the practical demands of visual perception across diverse and unseen scenarios. In this paper, we introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component, conditioned on local context. We propose a reconstruction of enhanced-light images within the HSV space utilizing an implicit neural function combined with an embedded guided filter, thereby significantly reducing computational overhead. Moreover, we introduce a single image-based training loss function to enhance the model's adaptability to various scenes, further enhancing its practical applicability. Through rigorous evaluations, we analyze the properties of our proposed framework, demonstrating its superiority in both image quality and scene adaptability. Furthermore, our evaluation extends to applications in downstream tasks within low-light scenarios, underscoring the practical utility of CoLIE. The source code is available at https://github.com/ctom2/colie.
Related papers
- CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - SCRNet: a Retinex Structure-based Low-light Enhancement Model Guided by
Spatial Consistency [22.54951703413469]
We present a novel low-light image enhancement model, termed Spatial Consistency Retinex Network (SCRNet)
Our proposed model incorporates three levels of consistency: channel level, semantic level, and texture level, inspired by the principle of spatial consistency.
Extensive evaluations on various low-light image datasets demonstrate that our proposed SCRNet outshines existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T03:32:19Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Self-Aligned Concave Curve: Illumination Enhancement for Unsupervised
Adaptation [36.050270650417325]
We propose a learnable illumination enhancement model for high-level vision.
Inspired by real camera response functions, we assume that the illumination enhancement function should be a concave curve.
Our model architecture and training designs mutually benefit each other, forming a powerful unsupervised normal-to-low light adaptation framework.
arXiv Detail & Related papers (2022-10-07T19:32:55Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
A typical framework is to simultaneously estimate the illumination and reflectance, but they disregard the scene-level contextual information encapsulated in feature spaces.
We develop a new context-sensitive decomposition network architecture to exploit the scene-level contextual dependencies on spatial scales.
We develop a lightweight CSDNet (named LiteCSDNet) by reducing the number of channels.
arXiv Detail & Related papers (2021-12-09T06:25:30Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.