Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends
- URL: http://arxiv.org/abs/2502.01671v1
- Date: Sat, 01 Feb 2025 17:26:19 GMT
- Title: Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends
- Authors: Ian Schneider, Hui Xu, Stephan Benecke, David Patterson, Keguo Huang, Parthasarathy Ranganathan, Cooper Elsworth,
- Abstract summary: This study presents the first publication of a comprehensive AI accelerator life-cycle assessment (LCA) of greenhouse gas emissions.
Our analysis of five Processing Units (TPUs) encompasses all stages of the hardware lifespan.
A byproduct of this study is the new metric compute carbon intensity (CCI) that is helpful in evaluating AI hardware sustainability.
- Score: 4.68541999760349
- License:
- Abstract: Specialized hardware accelerators aid the rapid advancement of artificial intelligence (AI), and their efficiency impacts AI's environmental sustainability. This study presents the first publication of a comprehensive AI accelerator life-cycle assessment (LCA) of greenhouse gas emissions, including the first publication of manufacturing emissions of an AI accelerator. Our analysis of five Tensor Processing Units (TPUs) encompasses all stages of the hardware lifespan - from raw material extraction, manufacturing, and disposal, to energy consumption during development, deployment, and serving of AI models. Using first-party data, it offers the most comprehensive evaluation to date of AI hardware's environmental impact. We include detailed descriptions of our LCA to act as a tutorial, road map, and inspiration for other computer engineers to perform similar LCAs to help us all understand the environmental impacts of our chips and of AI. A byproduct of this study is the new metric compute carbon intensity (CCI) that is helpful in evaluating AI hardware sustainability and in estimating the carbon footprint of training and inference. This study shows that CCI improves 3x from TPU v4i to TPU v6e. Moreover, while this paper's focus is on hardware, software advancements leverage and amplify these gains.
Related papers
- Exploring the sustainable scaling of AI dilemma: A projective study of corporations' AI environmental impacts [0.0]
We propose a methodology to estimate the environmental impact of a company's AI portfolio.
Results confirm that large generative AI models consume up to 4600x more energy than traditional models.
Mitigating the environmental impact of Generative AI by 2030 requires coordinated efforts across the AI value chain.
arXiv Detail & Related papers (2025-01-24T08:58:49Z) - Benchmarking End-To-End Performance of AI-Based Chip Placement Algorithms [77.71341200638416]
ChiPBench is a benchmark designed to evaluate the effectiveness of AI-based chip placement algorithms.
We have gathered 20 circuits from various domains (e.g., CPU, GPU, and microcontrollers) for evaluation.
Results show that even if intermediate metric of a single-point algorithm is dominant, the final PPA results are unsatisfactory.
arXiv Detail & Related papers (2024-07-03T03:29:23Z) - Beyond Efficiency: Scaling AI Sustainably [4.711003829305544]
Modern AI applications have driven ever-increasing demands in computing.
This paper characterizes the carbon impact of AI, including both operational carbon emissions from training and inference as well as embodied carbon emissions from hardware manufacturing.
arXiv Detail & Related papers (2024-06-08T00:07:16Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases.
We present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI.
arXiv Detail & Related papers (2021-10-30T23:36:10Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.