Position: Towards a Responsible LLM-empowered Multi-Agent Systems
- URL: http://arxiv.org/abs/2502.01714v1
- Date: Mon, 03 Feb 2025 16:04:30 GMT
- Title: Position: Towards a Responsible LLM-empowered Multi-Agent Systems
- Authors: Jinwei Hu, Yi Dong, Shuang Ao, Zhuoyun Li, Boxuan Wang, Lokesh Singh, Guangliang Cheng, Sarvapali D. Ramchurn, Xiaowei Huang,
- Abstract summary: The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation.<n>These advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound, threatening system stability.<n>To address these risks, a human-centered design approach with active dynamic moderation is essential.
- Score: 22.905804138387854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation. Tools like LangChain and Retrieval-Augmented Generation have expanded LLM capabilities, enabling deeper integration into MAS through enhanced knowledge retrieval and reasoning. However, these advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound across interactions, threatening system stability. To address these risks, a human-centered design approach with active dynamic moderation is essential. Such an approach enhances traditional passive oversight by facilitating coherent inter-agent communication and effective system governance, allowing MAS to achieve desired outcomes more efficiently.
Related papers
- Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.
LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroAct is a framework that jointly optimize both task-planning and self-reflective evolution capabilities in language agents.
We develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning.
We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
arXiv Detail & Related papers (2025-03-03T12:54:54Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.<n>We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.<n>In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - A Study on Prompt Injection Attack Against LLM-Integrated Mobile Robotic Systems [4.71242457111104]
Large Language Models (LLMs) can process multi-modal prompts, enabling them to generate more context-aware responses.
One of the primary concerns is the potential security risks associated with using LLMs in robotic navigation tasks.
This study investigates the impact of prompt injections on mobile robot performance in LLM-integrated systems.
arXiv Detail & Related papers (2024-08-07T02:48:22Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm.
We show that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
We highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities.
Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
We develop a modular framework called LLaMAC to address hallucination in Large Language Models and coordination in Multi-Agent Systems.
LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules.
arXiv Detail & Related papers (2023-11-23T10:14:58Z) - Self-Adaptive Large Language Model (LLM)-Based Multiagent Systems [0.0]
We propose the integration of large language models (LLMs) into multiagent systems.
We anchor our methodology on the MAPE-K model, which is renowned for its robust support in monitoring, analyzing, planning, and executing system adaptations.
arXiv Detail & Related papers (2023-07-12T14:26:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.