Postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates
- URL: http://arxiv.org/abs/2502.01735v1
- Date: Mon, 03 Feb 2025 19:00:01 GMT
- Title: Postselection-free experimental observation of the measurement-induced phase transition in circuits with universal gates
- Authors: Xiaozhou Feng, Jeremy Côté, Stefanos Kourtis, Brian Skinner,
- Abstract summary: Many-body systems can exhibit a phase transition between entangling and disentangling dynamical phases by tuning the strength of measurements made on the system as it evolves.
This phenomenon is called the measurement-induced phase transition (MIPT)
We show that the MIPT can be detected without postselection using only a simple classical decoding process.
- Score: 0.0
- License:
- Abstract: Monitored many-body systems can exhibit a phase transition between entangling and disentangling dynamical phases by tuning the strength of measurements made on the system as it evolves. This phenomenon is called the measurement-induced phase transition (MIPT). Understanding the properties of the MIPT is a prominent challenge for both theory and experiment at the intersection of many-body physics and quantum information. Realizing the MIPT experimentally is particularly challenging due to the postselection problem, which demands a number of experimental realizations that grows exponentially with the number of measurements made during the dynamics. Proposed approaches that circumvent the postselection problem typically rely on a classical decoding process that infers the final state based on the measurement record. But the complexity of this classical process generally also grows exponentially with the system size unless the dynamics is restricted to a fine-tuned set of unitary operators. In this work we overcome these difficulties. We construct a tree-shaped quantum circuit whose nodes are Haar-random unitary operators followed by weak measurements of tunable strength. For these circuits, we show that the MIPT can be detected without postselection using only a simple classical decoding process whose complexity grows linearly with the number of qubits. Our protocol exploits the recursive structure of tree circuits, which also enables a complete theoretical description of the MIPT, including an exact solution for its critical point and scaling behavior. We experimentally realize the MIPT on Quantinuum's H1-1 trapped-ion quantum computer and show that the experimental results are precisely described by theory. Our results close the gap between analytical theory and postselection-free experimental observation of the MIPT.
Related papers
- Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Quantum complexity phase transitions in monitored random circuits [0.29998889086656577]
We study the dynamics of the quantum state complexity in monitored random circuits.
We find that the evolution of the exact quantum state complexity undergoes a phase transition when changing the measurement rate.
arXiv Detail & Related papers (2023-05-24T18:00:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Measurement and entanglement phase transitions in all-to-all quantum
circuits, on quantum trees, and in Landau-Ginsburg theory [0.0]
We introduce theoretical approaches to measurement-induced phase transitions (MPT) and entanglement transitions in random tensor networks.
Many of our results are for "all-to-all" quantum circuits with unitaries and measurements.
arXiv Detail & Related papers (2020-09-23T18:00:14Z) - Quantum feedback for measurement and control [0.0]
Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements.
We combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier.
arXiv Detail & Related papers (2020-04-21T06:00:54Z) - Entanglement phase transitions in measurement-only dynamics [0.0]
Unitary circuits subject to repeated projective measurements can undergo an entanglement phase transition (EPT)
EPTs are possible even in the absence of scrambling unitary dynamics.
We explore the entanglement phase diagrams, critical points, and quantum code properties of some measurement-only models.
arXiv Detail & Related papers (2020-04-20T18:32:54Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
We show that the diffusion map method, which performs nonlinear dimensionality reduction and spectral clustering of the measurement data, has significant potential for learning complex phase transitions unsupervised.
This method works for measurements of local observables in a single basis and is thus readily applicable to many experimental quantum simulators.
arXiv Detail & Related papers (2020-03-16T18:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.