論文の概要: Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity
- arxiv url: http://arxiv.org/abs/2502.01776v1
- Date: Mon, 03 Feb 2025 19:29:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:18.136854
- Title: Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity
- Title(参考訳): Sparse VideoGen: 空間空間空間の間隔でビデオ拡散変換器を高速化する
- Authors: Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, Song Han,
- Abstract要約: 拡散変換器(DiT)はビデオ生成を支配しているが、その高い計算コストは現実の応用性を著しく制限する。
Sparse VideoGen (SVG) と呼ばれる3次元フルアテンションに固有の空間を利用して推論効率を向上する学習自由フレームワークを提案する。
SVGはCagVideoX-v1.5とHunyuanVideoで最大2.28倍と2.33倍のスピードアップを達成する。
- 参考スコア(独自算出の注目度): 59.80405282381126
- License:
- Abstract: Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability, usually requiring tens of minutes to generate a few seconds of video even on high-performance GPUs. This inefficiency primarily arises from the quadratic computational complexity of 3D Full Attention with respect to the context length. In this paper, we propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency. We reveal that the attention heads can be dynamically classified into two groups depending on distinct sparse patterns: (1) Spatial Head, where only spatially-related tokens within each frame dominate the attention output, and (2) Temporal Head, where only temporally-related tokens across different frames dominate. Based on this insight, SVG proposes an online profiling strategy to capture the dynamic sparse patterns and predicts the type of attention head. Combined with a novel hardware-efficient tensor layout transformation and customized kernel implementations, SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality.
- Abstract(参考訳): ディフュージョントランスフォーマー(Diffusion Transformer, DiT)はビデオ生成を支配しているが、その高い計算コストは現実の応用性を著しく制限する。
この非効率性は、主に文脈長に関する3次元フルアテンションの2次計算複雑性から生じる。
本稿では,Sparse VideoGen (SVG) と呼ばれる3次元フルアテンションに固有の空間を生かして推論効率を向上する学習自由フレームワークを提案する。
その結果,(1)空間的頭部,各フレーム内の空間的関連トークンのみを主眼とする空間的頭部,(2)時間的関連トークンのみを主眼とする時間的頭部の2つのグループに動的に分類できることが判明した。
この知見に基づき、SVGは動的スパースパターンを捕捉し、注意のタイプを予測するオンラインプロファイリング戦略を提案する。
新たなハードウェア効率の高いテンソルレイアウト変換とカーネル実装を組み合わせることで、SVGは生成品質を保ちながら、CogVideoX-v1.5とHunyuanVideoの2.28倍と2.33倍のエンドツーエンドのスピードアップを実現した。
関連論文リスト
- DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training [85.04885553561164]
拡散変換器(DiT)は、高品質なビデオのモデリングと生成において顕著な性能を示した。
本稿では,ビデオDiTのトレーニングを加速し,拡張するための新しいフレームワークであるDSVを紹介する。
論文 参考訳(メタデータ) (2025-02-11T14:39:59Z) - Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile [28.913893318345384]
3次元フルアテンションを持つ拡散変換器(DiT)は、注意計算の複雑さと多数のサンプリングステップにより、高価な推論に悩まされる。
本稿では,1)ビデオデータの冗長性に基づく3Dフルアテンションの抽出,2)既存の多段整合蒸留によるサンプリングプロセスの短縮,の2つの側面から非効率性の問題に対処する。
論文 参考訳(メタデータ) (2025-02-10T05:00:56Z) - VidTwin: Video VAE with Decoupled Structure and Dynamics [24.51768013474122]
VidTwinはビデオの自動エンコーダで、ビデオを2つの異なる遅延空間に分離する。
構造潜時ベクトルは全体内容とグローバルな動きを捉え、ダイナミクス潜時ベクトルは微細な詳細と高速な動きを表す。
実験により、VidTwinは高い圧縮率で高い復元品質で0.20%を達成することが示された。
論文 参考訳(メタデータ) (2024-12-23T17:16:58Z) - Representing Long Volumetric Video with Temporal Gaussian Hierarchy [80.51373034419379]
本稿では,多視点RGBビデオから長いボリューム映像を再構成することの課題を解決することを目的とする。
本稿では,テンポラルガウス階層(Temporal Gaussian Hierarchy)と呼ばれる新しい4次元表現を提案する。
この研究は、最先端のレンダリング品質を維持しながら、ボリュームビデオデータの分を効率的に処理できる最初のアプローチである。
論文 参考訳(メタデータ) (2024-12-12T18:59:34Z) - V^3: Viewing Volumetric Videos on Mobiles via Streamable 2D Dynamic Gaussians [53.614560799043545]
V3 (Viewing Volumetric Videos) は,ダイナミックガウスのストリーミングによる高品質なモバイルレンダリングを実現する,新たなアプローチである。
私たちの重要なイノベーションは、ダイナミックな3DGSを2Dビデオと見なすことで、ハードウェアビデオコーデックの使用を促進することです。
モバイル端末でダイナミックなガウシアンをストリームする最初の手段として、私たちのコンパニオンプレーヤーは、前例のないボリュームビデオ体験をユーザに提供します。
論文 参考訳(メタデータ) (2024-09-20T16:54:27Z) - CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer [55.515836117658985]
拡散トランスを用いた大規模テキスト・ビデオ生成モデルであるCogVideoXを提案する。
フレームレートは16fps、解像度は768×1360ピクセル。
論文 参考訳(メタデータ) (2024-08-12T11:47:11Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
我々は,学習可能な位置特徴(NVP)を用いて,映像を潜時符号として効果的に再生するニューラル表現の訓練方法を示す。
一般的なUVGベンチマークにおけるNVPの優位性を実証し,先行技術と比較して,NVPは2倍の速度(5分以内)で走行するだけでなく,符号化品質も34.07rightarrow$34.57(PSNR測定値で測定)に上回っている。
論文 参考訳(メタデータ) (2022-10-13T08:15:08Z) - Real-time Online Video Detection with Temporal Smoothing Transformers [4.545986838009774]
優れたストリーミング認識モデルは、ビデオの長期的ダイナミクスと短期的変化の両方をキャプチャする。
この問題に対処するため、カーネルのレンズを通してビデオトランスのクロスアテンションを再構成する。
テンポラルスムース変換器であるTeSTraを構築し、キャッシュと計算オーバーヘッドを一定に保ちながら任意の長さの入力を行う。
論文 参考訳(メタデータ) (2022-09-19T17:59:02Z) - Spatial-Temporal Transformer for Dynamic Scene Graph Generation [34.190733855032065]
本研究では,(1)入力フレームを用いてフレーム内の視覚的関係を抽出する空間エンコーダと,(2)空間エンコーダの出力を入力とする時間デコーダの2つのコアモジュールからなるニューラルネットワークを提案する。
我々の方法はベンチマークデータセットAction Genome(AG)で検証されている。
論文 参考訳(メタデータ) (2021-07-26T16:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。