論文の概要: VILP: Imitation Learning with Latent Video Planning
- arxiv url: http://arxiv.org/abs/2502.01784v1
- Date: Mon, 03 Feb 2025 19:55:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:44.260945
- Title: VILP: Imitation Learning with Latent Video Planning
- Title(参考訳): VILP: 潜時ビデオプランニングによる模倣学習
- Authors: Zhengtong Xu, Qiang Qiu, Yu She,
- Abstract要約: 本稿では、遅延ビデオ計画(VILP)による模倣学習を紹介する。
複数のビューから高度にタイムアラインなビデオを生成することができる。
本稿では,映像生成モデルをロボットポリシーに効果的に統合する方法の実践例を提供する。
- 参考スコア(独自算出の注目度): 19.25411361966752
- License:
- Abstract: In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-efficient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our findings indicate that VILP can rely less on extensive high-quality task-specific robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related fields and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.
- Abstract(参考訳): 生成AIの時代において、ビデオ生成モデルをロボット工学に統合することは、汎用ロボットエージェントの新しい可能性を開く。
本稿では,遅延ビデオ計画(VILP)による模倣学習を紹介する。
本稿では,時間的一貫性に順応する予測ロボットビデオを生成するための潜時ビデオ拡散モデルを提案する。
本手法は,ロボットのポリシー学習に不可欠である複数の視点から,高度にタイムアラインなビデオを生成することができる。
私たちのビデオ生成モデルは、非常に時間効率が高い。
例えば、2つの異なる視点からビデオを生成することができ、それぞれ96×160ピクセルの解像度で5Hzの解像度で6つのフレームで構成されている。
実験では、VILPは既存のビデオ生成ロボットのポリシーよりも、トレーニングコスト、推論速度、生成されたビデオの時間的一貫性、ポリシーの性能など、いくつかの指標で優れていることを示した。
また,本手法を他の模倣学習法と比較した。
以上の結果から,VILPは高い品質のタスク特異的なロボット行動データに頼らず,頑健な性能を維持することができることがわかった。
さらに、VILPはマルチモーダルな動作分布を表す堅牢な能力を持っている。
本稿では、映像生成モデルをロボットポリシーに効果的に統合する方法の実践例を示し、関連分野や方向についての洞察を提供する可能性がある。
詳細はオープンソースリポジトリhttps://github.com/ZhengtongXu/VILPを参照してください。
関連論文リスト
- VLM See, Robot Do: Human Demo Video to Robot Action Plan via Vision Language Model [4.557035895252272]
視覚言語モデル(VLM)は、常識推論と一般化可能性において、ロボット工学に採用されている。
本研究では,VLMを用いて人間のデモ映像を解釈し,ロボットによるタスク計画を生成する。
これは、VLMが人間によるデモンストレーションを「見る」ことができ、それに対応する計画をロボットに「見る」ように説明できるためである。
論文 参考訳(メタデータ) (2024-10-11T13:17:52Z) - Dreamitate: Real-World Visuomotor Policy Learning via Video Generation [49.03287909942888]
本研究では,与えられたタスクの人間による実演の映像拡散モデルを微調整するビジュモータポリシー学習フレームワークを提案する。
我々は,新しいシーンの画像に条件付きタスクの実行例を生成し,この合成された実行を直接使用してロボットを制御する。
論文 参考訳(メタデータ) (2024-06-24T17:59:45Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
LLARVAは,ロボット学習タスク,シナリオ,環境を統一するための,新しい指導指導法で訓練されたモデルである。
我々は,Open X-Embodimentデータセットから8.5Mの画像-視覚的トレースペアを生成し,モデルを事前学習する。
実験によって強い性能が得られ、LLARVAは現代のいくつかのベースラインと比較してよく機能することを示した。
論文 参考訳(メタデータ) (2024-06-17T17:55:29Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
ジェネラリストの具体化エージェントを学ぶことは、主にアクションラベル付きロボットデータセットの不足に起因して、課題を提起する。
これらの課題に対処するための新しい枠組みを導入し、人間のビデオにおける生成前トレーニングと、少数のアクションラベル付きロボットビデオのポリシー微調整を組み合わせるために、統一された離散拡散を利用する。
提案手法は, 従来の最先端手法と比較して, 高忠実度な今後の計画ビデオを生成し, 細調整されたポリシーを強化する。
論文 参考訳(メタデータ) (2024-02-22T09:48:47Z) - Learning by Watching: A Review of Video-based Learning Approaches for
Robot Manipulation [0.0]
最近の研究は、オンラインで公開されている豊富な動画を受動的に視聴することで、学習操作のスキルを探求している。
本調査では,映像特徴表現学習技術,物価理解,3次元ハンド・ボディ・モデリング,大規模ロボット資源などの基礎を概観する。
ロボット操作の一般化とサンプル効率を高めるために,大規模な人的映像を観察することのみから学習する方法を論じる。
論文 参考訳(メタデータ) (2024-02-11T08:41:42Z) - Learning to Act from Actionless Videos through Dense Correspondences [87.1243107115642]
本稿では,様々なロボットや環境にまたがる多様なタスクを確実に実行可能なビデオベースのロボットポリシーを構築するためのアプローチを提案する。
本手法は,ロボットの目標を指定するための汎用表現として,状態情報と行動情報の両方を符号化するタスク非依存表現として画像を利用する。
テーブルトップ操作とナビゲーションタスクの学習方針における我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-10-12T17:59:23Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
ドメインに依存しないビデオ識別器(DVD)は、2つのビデオが同じタスクを実行しているかどうかを判断するために識別器を訓練することによりマルチタスク報酬関数を学習する。
DVDは、人間のビデオの広いデータセットで少量のロボットデータから学習することで、一般化することができる。
DVDと視覚モデル予測制御を組み合わせることで、実際のWidowX200ロボットのロボット操作タスクを単一の人間のデモから未知の環境で解決できます。
論文 参考訳(メタデータ) (2021-03-31T05:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。