論文の概要: Dreamitate: Real-World Visuomotor Policy Learning via Video Generation
- arxiv url: http://arxiv.org/abs/2406.16862v1
- Date: Mon, 24 Jun 2024 17:59:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 13:36:22.102741
- Title: Dreamitate: Real-World Visuomotor Policy Learning via Video Generation
- Title(参考訳): Dreamitate: ビデオ生成による実世界のビジュモータ政策学習
- Authors: Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran Song, Carl Vondrick,
- Abstract要約: 本研究では,与えられたタスクの人間による実演の映像拡散モデルを微調整するビジュモータポリシー学習フレームワークを提案する。
我々は,新しいシーンの画像に条件付きタスクの実行例を生成し,この合成された実行を直接使用してロボットを制御する。
- 参考スコア(独自算出の注目度): 49.03287909942888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, which are pretrained on large-scale datasets of internet videos. In this paper, we propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task. At test time, we generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot. Our key insight is that using common tools allows us to effortlessly bridge the embodiment gap between the human hand and the robot manipulator. We evaluate our approach on four tasks of increasing complexity and demonstrate that harnessing internet-scale generative models allows the learned policy to achieve a significantly higher degree of generalization than existing behavior cloning approaches.
- Abstract(参考訳): 操作における重要な課題は、多様な視覚環境に堅牢に一般化できるポリシーを学ぶことである。
堅牢なポリシーを学ぶための有望なメカニズムは、大規模なインターネットビデオデータセットで事前訓練されたビデオ生成モデルを活用することである。
本稿では,与えられたタスクの人間による実演の映像拡散モデルを微調整するビジュモータポリシー学習フレームワークを提案する。
テスト時には,新しいシーンの画像に条件付けされたタスクの実行例を生成し,この合成実行を直接使用してロボットを制御する。
私たちの重要な洞察は、共通のツールを使用することで、人間の手とロボットマニピュレータの間のエンボディメントギャップを、力ずくで埋めることができるということです。
複雑化の4つの課題に対するアプローチを評価し,インターネット規模の生成モデルを活用することで,学習方針が既存の行動クローニング手法よりもはるかに高い一般化を実現できることを実証した。
関連論文リスト
- Learning to Act from Actionless Videos through Dense Correspondences [87.1243107115642]
本稿では,様々なロボットや環境にまたがる多様なタスクを確実に実行可能なビデオベースのロボットポリシーを構築するためのアプローチを提案する。
本手法は,ロボットの目標を指定するための汎用表現として,状態情報と行動情報の両方を符号化するタスク非依存表現として画像を利用する。
テーブルトップ操作とナビゲーションタスクの学習方針における我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-10-12T17:59:23Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
論文 参考訳(メタデータ) (2022-05-17T13:15:07Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。