論文の概要: Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.01819v1
- Date: Mon, 03 Feb 2025 20:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:11.953533
- Title: Score as Action: Fine-Tuning Diffusion Generative Models by Continuous-time Reinforcement Learning
- Title(参考訳): Score as Action: 連続時間強化学習による微調整拡散生成モデル
- Authors: Hanyang Zhao, Haoxian Chen, Ji Zhang, David D. Yao, Wenpin Tang,
- Abstract要約: 人間のフィードバックからの強化学習(RLHF)は、信頼できる生成AIモデルを構築する上で重要なステップとなっている。
本研究は、連続時間RLを用いた微動拡散モデルに対する規律付きアプローチを開発することを目的とする。
- 参考スコア(独自算出の注目度): 9.025671446527694
- License:
- Abstract: Reinforcement learning from human feedback (RLHF), which aligns a diffusion model with input prompt, has become a crucial step in building reliable generative AI models. Most works in this area use a discrete-time formulation, which is prone to induced errors, and often not applicable to models with higher-order/black-box solvers. The objective of this study is to develop a disciplined approach to fine-tune diffusion models using continuous-time RL, formulated as a stochastic control problem with a reward function that aligns the end result (terminal state) with input prompt. The key idea is to treat score matching as controls or actions, and thereby making connections to policy optimization and regularization in continuous-time RL. To carry out this idea, we lay out a new policy optimization framework for continuous-time RL, and illustrate its potential in enhancing the value networks design space via leveraging the structural property of diffusion models. We validate the advantages of our method by experiments in downstream tasks of fine-tuning large-scale Text2Image models of Stable Diffusion v1.5.
- Abstract(参考訳): 人間のフィードバックからの強化学習(RLHF)は、拡散モデルと入力プロンプトを整合させるものであり、信頼できる生成AIモデルを構築する上で重要なステップとなっている。
この分野のほとんどの研究は離散時間定式化を使用しており、これは引き起こされるエラーの傾向があり、高階/ブラックボックスの解法を持つモデルには適用されないことが多い。
本研究の目的は,終末結果(終末状態)を入力プロンプトと整合する報奨関数を持つ確率的制御問題として定式化された連続時間RLを用いた細管拡散モデルに対する規律付きアプローチを開発することである。
鍵となる考え方は、スコアマッチングをコントロールやアクションとして扱い、それによってポリシー最適化と継続的RLの正規化に接続することである。
この考え方を実現するために、我々は、連続時間RLのための新しいポリシー最適化フレームワークを構築し、拡散モデルの構造的特性を活用して、価値ネットワーク設計空間を拡張できる可能性を示す。
安定拡散v1.5の大規模テキスト2画像モデルの下流タスクにおける実験により,本手法の利点を検証した。
関連論文リスト
- Avoiding mode collapse in diffusion models fine-tuned with reinforcement learning [0.0]
強化学習(RL)による微調整基礎モデルは、下流の目標に整合する上で有望であることが証明されている。
拡散モデル (DM) の階層的性質を生かし, 各エポックでRL法で動的に訓練する。
HRFで訓練したモデルは、下流タスクにおける多様性の保存性を向上し、微調整の堅牢性を高め、平均報酬を損なうことなく達成できることが示される。
論文 参考訳(メタデータ) (2024-10-10T19:06:23Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Scores as Actions: a framework of fine-tuning diffusion models by continuous-time reinforcement learning [9.025671446527694]
人間からのフィードバックからの強化学習(RLHF)は、生成モデルと人間の意図を整合させる上で有望な方向を示す。
本研究では,人間のフィードバックから学習した報酬関数を探索的連続時間制御問題として,微調整拡散モデルのタスクを定式化する。
我々は、異なる方程式の仮定の下で、ポリシー最適化と正規化のための対応する連続時間RL理論を開発する。
論文 参考訳(メタデータ) (2024-09-12T21:12:21Z) - Reward-Directed Score-Based Diffusion Models via q-Learning [8.725446812770791]
生成AIのための連続時間スコアベース拡散モデルのトレーニングのための新しい強化学習(RL)法を提案する。
我々の定式化は、ノイズ摂動データ分布の未知のスコア関数に対する事前学習モデルを含まない。
論文 参考訳(メタデータ) (2024-09-07T13:55:45Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Adding Conditional Control to Diffusion Models with Reinforcement Learning [59.295203871547336]
拡散モデルは、生成されたサンプルの特性を正確に制御できる強力な生成モデルである。
本研究では、オフラインデータセットを活用した強化学習(RL)に基づく新しい制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T22:00:26Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
本稿では,連続制御タスクにおけるサンプル効率の高い探索手法について検討する。
本稿では,予測モデルと非政治学習要素を組み込んだRLアルゴリズムを提案する。
パラメーターのオーバーヘッドを発生させずに本質的な報酬を導き出す。
論文 参考訳(メタデータ) (2024-03-31T11:39:11Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。