論文の概要: IG-MCTS: Human-in-the-Loop Cooperative Navigation under Incomplete Information
- arxiv url: http://arxiv.org/abs/2502.01857v2
- Date: Thu, 09 Oct 2025 18:20:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 00:38:45.001969
- Title: IG-MCTS: Human-in-the-Loop Cooperative Navigation under Incomplete Information
- Title(参考訳): IG-MCTS:不完全情報による対人協調ナビゲーション
- Authors: Shenghui Chen, Ruihan Zhao, Sandeep Chinchali, Ufuk Topcu,
- Abstract要約: CoNav-Mazeは、人間のオペレータが不正確な地図に基づいてガイダンスを提供する間、ロボットが局所的な知覚でナビゲートするシミュレーション環境である。
我々は,自律移動と情報通信を協調的に最適化する情報ゲインモンテカルロ木探索(IG-MCTS)を提案する。
IG-MCTSはコミュニケーション要求を著しく減らし、認知負荷の低下を示す視線追跡指標を得る。
- 参考スコア(独自算出の注目度): 22.47189812250736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-robot cooperative navigation is challenging under incomplete information. We introduce CoNav-Maze, a simulated environment where a robot navigates with local perception while a human operator provides guidance based on an inaccurate map. The robot can share its onboard camera views to help the operator refine their understanding of the environment. To enable efficient cooperation, we propose Information Gain Monte Carlo Tree Search (IG-MCTS), an online planning algorithm that jointly optimizes autonomous movement and informative communication. IG-MCTS leverages a learned Neural Human Perception Model (NHPM) -- trained on a crowdsourced mapping dataset -- to predict how the human's internal map evolves as new observations are shared. User studies show that IG-MCTS significantly reduces communication demands and yields eye-tracking metrics indicative of lower cognitive load, while maintaining task performance comparable to teleoperation and instruction-following baselines. Finally, we illustrate generalization beyond discrete mazes through a continuous-space waterway navigation setting, in which NHPM benefits from deeper encoder-decoder architectures and IG-MCTS leverages a dynamically constructed Voronoi-partitioned traversability graph.
- Abstract(参考訳): 人間ロボットの協調航行は不完全な情報の下で困難である。
人間のオペレータが不正確な地図に基づいてガイダンスを提供する間、ロボットが局所的な知覚でナビゲートするシミュレーション環境であるCoNav-Mazeを紹介する。
このロボットは、カメラ上のビューを共有して、オペレーターが環境を理解するのを助ける。
本稿では,自律的な移動と情報通信を協調的に最適化するオンライン計画アルゴリズムであるIG-MCTSを提案する。
IG-MCTSは、クラウドソースされたマッピングデータセットに基づいてトレーニングされた、学習されたニューラルヒューマンパーセプションモデル(NHPM)を活用して、新しい観察が共有されるにつれて、人間の内部マップがどのように進化するかを予測する。
ユーザスタディによれば、IG-MCTSは通信要求を著しく減らし、認知負荷の低下を示す視線追跡指標を得る一方で、遠隔操作や指示追従ベースラインに匹敵するタスク性能を維持する。
最後に, NHPM はより深いエンコーダデコーダアーキテクチャの恩恵を受け, IG-MCTS は動的に構築されたボロノイ分割トラバーサビリティグラフを利用する。
関連論文リスト
- Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
本稿では,視覚的特徴と操作タスクの行動や受容といった動的情報の両方を抽出する基礎表現学習フレームワークを提案する。
具体的には、DROIDロボットデータセット上で視覚エンコーダを事前訓練し、ロボットの受容状態や動作などの動作関連データを活用する。
本研究では,視覚的観察をロボットの主観的状態-動作ダイナミクスと整合させる新しいコントラスト的損失と,事前トレーニング中の行動を予測する行動クローニング(BC)のようなアクター損失と,時間的コントラスト的損失を導入する。
論文 参考訳(メタデータ) (2024-10-29T17:58:13Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
本稿では,ヒト-ヒトインタラクション(HHI)から協調型人間-ロボットインタラクション(HRI)を学習する方法を提案する。
本研究では,隠れマルコフモデル(HMM)を変分オートエンコーダの潜在空間として用いて,相互作用するエージェントの結合分布をモデル化するハイブリッドアプローチを考案する。
ユーザが私たちのメソッドを,より人間らしく,タイムリーで,正確なものと認識し,他のベースラインよりも高い優先度でメソッドをランク付けすることが分かりました。
論文 参考訳(メタデータ) (2023-11-27T23:56:59Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
視覚に基づくナビゲーションのための一般的な目標条件付きモデルは、多くの異なるが構造的に類似したロボットから得られたデータに基づいて訓練することができる。
ロボット間の効率的なデータ共有に必要な設計決定について分析する。
我々は、訓練されたGNMを、下四極子を含む様々な新しいロボットに展開する。
論文 参考訳(メタデータ) (2022-10-07T07:26:41Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。