論文の概要: HeRCULES: Heterogeneous Radar Dataset in Complex Urban Environment for Multi-session Radar SLAM
- arxiv url: http://arxiv.org/abs/2502.01946v2
- Date: Tue, 18 Feb 2025 11:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:01:26.741718
- Title: HeRCULES: Heterogeneous Radar Dataset in Complex Urban Environment for Multi-session Radar SLAM
- Title(参考訳): HeRCULES:マルチセッションレーダSLAMのための複雑な都市環境における異種レーダデータセット
- Authors: Hanjun Kim, Minwoo Jung, Chiyun Noh, Sangwoo Jung, Hyunho Song, Wooseong Yang, Hyesu Jang, Ayoung Kim,
- Abstract要約: HeRCULESデータセットは、ヘテロジニアスレーダー、FMCW LiDAR、IMU、GPS、カメラを備えた包括的なマルチモーダルデータセットである。
これは、FMCW LiDARと並行して4Dレーダと回転レーダを統合する最初のデータセットであり、非並列なローカライゼーション、マッピング、位置認識機能を提供する。
- 参考スコア(独自算出の注目度): 9.462058316827804
- License:
- Abstract: Recently, radars have been widely featured in robotics for their robustness in challenging weather conditions. Two commonly used radar types are spinning radars and phased-array radars, each offering distinct sensor characteristics. Existing datasets typically feature only a single type of radar, leading to the development of algorithms limited to that specific kind. In this work, we highlight that combining different radar types offers complementary advantages, which can be leveraged through a heterogeneous radar dataset. Moreover, this new dataset fosters research in multi-session and multi-robot scenarios where robots are equipped with different types of radars. In this context, we introduce the HeRCULES dataset, a comprehensive, multi-modal dataset with heterogeneous radars, FMCW LiDAR, IMU, GPS, and cameras. This is the first dataset to integrate 4D radar and spinning radar alongside FMCW LiDAR, offering unparalleled localization, mapping, and place recognition capabilities. The dataset covers diverse weather and lighting conditions and a range of urban traffic scenarios, enabling a comprehensive analysis across various environments. The sequence paths with multiple revisits and ground truth pose for each sensor enhance its suitability for place recognition research. We expect the HeRCULES dataset to facilitate odometry, mapping, place recognition, and sensor fusion research. The dataset and development tools are available at https://sites.google.com/view/herculesdataset.
- Abstract(参考訳): 近年、レーダーは、厳しい気象条件下での堅牢性のために、ロボット工学で広く取り上げられている。
一般的に使用されるレーダーは、回転レーダーとフェーズドアレイレーダーの2種類で、それぞれに異なるセンサー特性がある。
既存のデータセットは通常、単一のタイプのレーダーのみを特徴とし、特定の種類のアルゴリズムの開発に繋がる。
本研究では、異なるレーダタイプを組み合わせることで、異種レーダデータセットを通じて活用できる相補的なアドバンテージが提供されることを強調する。
さらに、この新しいデータセットは、ロボットが異なる種類のレーダーを装備しているマルチセッションおよびマルチロボットシナリオの研究を促進する。
この文脈では、異種レーダー、FMCW LiDAR、IMU、GPS、カメラを備えた包括的マルチモーダルデータセットであるHeRCULESデータセットを導入する。
これは、FMCW LiDARと並行して4Dレーダと回転レーダを統合する最初のデータセットであり、非並列なローカライゼーション、マッピング、位置認識機能を提供する。
このデータセットは、様々な気象条件と照明条件、および様々な都市交通シナリオをカバーし、様々な環境にわたって包括的な分析を可能にする。
複数のリビジットと接地真理を持つシーケンスパスは、各センサに作用し、位置認識研究への適合性を高める。
We expect the HeRCULES dataset to help odometry, mapping, place recognition, and sensor fusion research。
データセットと開発ツールはhttps://sites.google.com/view/herculesdatasetで公開されている。
関連論文リスト
- SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review [9.68427762815025]
レビューでは、自律運転システムで使用されるさまざまなレーダーデータ表現の探索に焦点を当てている。
レーダセンサの機能と限界について紹介する。
各レーダ表現について、関連するデータセット、方法、利点、限界について検討する。
論文 参考訳(メタデータ) (2023-12-08T06:31:19Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - Radar Artifact Labeling Framework (RALF): Method for Plausible Radar
Detections in Datasets [2.5899040911480187]
粗いレーダ点雲のラベル付けのためのクロスセンサレーダアーチファクトラベルフレームワーク(RALF)を提案する。
RALFは、レーダーの生検出のための可視性ラベルを提供し、アーティファクトとターゲットを区別する。
半手動ラベル付き地上真理データセットの3.28cdot106$ポイントの誤差測定値を評価することにより,結果を検証する。
論文 参考訳(メタデータ) (2020-12-03T15:11:31Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。