VFScale: Intrinsic Reasoning through Verifier-Free Test-time Scalable Diffusion Model
- URL: http://arxiv.org/abs/2502.01989v3
- Date: Sat, 31 May 2025 08:36:55 GMT
- Title: VFScale: Intrinsic Reasoning through Verifier-Free Test-time Scalable Diffusion Model
- Authors: Tao Zhang, Jia-Shu Pan, Ruiqi Feng, Tailin Wu,
- Abstract summary: We introduce the Verifier-free Test-time scalable Diffusion Model (VFScale) to achieve scalable intrinsic reasoning.<n>On challenging reasoning tasks of Maze and Sudoku, we demonstrate the effectiveness of VFScale's training objective and scalable inference method.<n>In particular, trained with Maze sizes of up to $6times6$, our VFScale solves 88% of Maze problems with much larger sizes of $15times15$, while standard diffusion model completely fails.
- Score: 7.250494262573953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by human SYSTEM 2 thinking, LLMs excel at complex reasoning tasks via extended Chain-of-Thought. However, similar test-time scaling for diffusion models to tackle complex reasoning remains largely unexplored. From existing work, two primary challenges emerge in this setting: (i) the dependence on an external verifier indicating a notable gap from intrinsic reasoning of human intelligence without any external feedback, and (ii) the lack of an efficient search algorithm. In this paper, we introduce the Verifier-free Test-time Scalable Diffusion Model (VFScale) to achieve scalable intrinsic reasoning, which equips number-of-sample test-time scaling with the intrinsic energy function of diffusion models as the verifier. Concretely, VFScale comprises two key innovations to address the aforementioned challenges. On the training side, VFScale consists of a novel LRNCL loss and a KL regularization to improve the energy landscape, ensuring that the learned energy function itself serves as a reliable verifier. On the inference side, VFScale integrates the denoising process with a novel hybrid Monte Carlo Tree Search (hMCTS) to improve search efficiency. On challenging reasoning tasks of Maze and Sudoku, we demonstrate the effectiveness of VFScale's training objective and scalable inference method. In particular, trained with Maze sizes of up to $6\times6$, our VFScale solves 88% of Maze problems with much larger sizes of $15\times15$, while standard diffusion model completely fails.
Related papers
- Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - The Hallucination Dilemma: Factuality-Aware Reinforcement Learning for Large Reasoning Models [63.98194996746229]
Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization.<n>However, reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations.<n>We propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification.
arXiv Detail & Related papers (2025-05-30T14:23:32Z) - Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging [17.038807261969033]
Long-to-Short (L2S) reasoning aims to balance reasoning depth with practical efficiency.<n>Model merging offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models.<n>Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance.
arXiv Detail & Related papers (2025-03-26T15:34:37Z) - Monte Carlo Tree Diffusion for System 2 Planning [57.50512800900167]
We introduce Monte Carlo Tree Diffusion (MCTD), a novel framework that integrates the generative strength of diffusion models with the adaptive search capabilities of Monte Carlo Tree Search (MCTS)
MCTD achieves the benefits of MCTS such as controlling exploration-exploitation trade-offs within the diffusion framework.
arXiv Detail & Related papers (2025-02-11T02:51:42Z) - Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning [32.45574194957491]
We show that training with cross-entropy loss can be misaligned with pass@N in that pass@N accuracy $it decreases$ with longer training.
We suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance.
arXiv Detail & Related papers (2025-02-11T00:33:31Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.
We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - Overcoming the Curse of Dimensionality in Reinforcement Learning Through Approximate Factorization [15.898378661128334]
Reinforcement Learning (RL) algorithms are known to suffer from the curse of dimensionality.
We propose overcoming the curse of dimensionality by approximately factorizing the original Markov decision processes (MDPs) into smaller, independently evolving MDPs.
We provide improved sample complexity guarantees for both proposed algorithms.
arXiv Detail & Related papers (2024-11-12T07:08:00Z) - Mitigating Embedding Collapse in Diffusion Models for Categorical Data [52.90687881724333]
We introduce CATDM, a continuous diffusion framework within the embedding space that stabilizes training.
Experiments on benchmarks show that CATDM mitigates embedding collapse, yielding superior results on FFHQ, LSUN Churches, and LSUN Bedrooms.
arXiv Detail & Related papers (2024-10-18T09:12:33Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
Reflectance-Aware Trajectory Refinement (RATR) is a simple yet effective module to refine the teacher trajectory using the reflectance component of images.
textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT) is an efficient and flexible distillation framework tailored for Low-Light Image Enhancement (LLIE)
arXiv Detail & Related papers (2024-10-16T08:07:18Z) - Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
We introduce a novel verification method based on Twisted Sequential Monte Carlo (TSMC)
We apply TSMC to Large Language Models by estimating the expected future rewards at partial solutions.
This approach results in a more straightforward training target that eliminates the need for step-wise human annotations.
arXiv Detail & Related papers (2024-10-02T18:17:54Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
We introduce a novel model that can generate diverse grasps for a multi-fingered hand.<n>The proposed idea gains superior performance and higher run-time efficiency against strong baselines.<n>We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
arXiv Detail & Related papers (2024-07-21T13:33:08Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
We propose a novel approach to integrate uncertainty-based active learning and LoRA.
For the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model.
For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident.
arXiv Detail & Related papers (2024-03-02T10:38:10Z) - Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models [19.466985579720507]
Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but the associated expensive API cost greatly limits the real application.
We propose "Synergy of Thoughts"(SoT) to unleash the synergistic potential of hybrid LLMs with different scales for efficient reasoning.
We show that SoT substantially reduces the API cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity.
arXiv Detail & Related papers (2024-02-04T16:45:01Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
Common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress.
We introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it.
arXiv Detail & Related papers (2023-10-05T00:23:34Z) - An Efficient Membership Inference Attack for the Diffusion Model by
Proximal Initialization [58.88327181933151]
In this paper, we propose an efficient query-based membership inference attack (MIA)
Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models.
To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the text-to-speech task.
arXiv Detail & Related papers (2023-05-26T16:38:48Z) - Optimizing DDPM Sampling with Shortcut Fine-Tuning [16.137936204766692]
Shortcut Fine-Tuning (SFT) is a new approach for addressing the challenge of fast sampling of pretrained Denoising Diffusion Probabilistic Models (DDPMs)
SFT advocates for the fine-tuning of DDPM samplers through the direct minimization of Integral Probability Metrics (IPM)
Inspired by a control perspective, we propose a new algorithm SFT-PG: Shortcut Fine-Tuning with Policy Gradient.
arXiv Detail & Related papers (2023-01-31T01:37:48Z) - Mitigating Catastrophic Forgetting in Scheduled Sampling with Elastic
Weight Consolidation in Neural Machine Translation [15.581515781839656]
Autoregressive models trained with maximum likelihood estimation suffer from exposure bias.
We propose using Elastic Weight Consolidation as trade-off between mitigating exposure bias and retaining output quality.
Experiments on two IWSLT'14 translation tasks demonstrate that our approach alleviates catastrophic forgetting and significantly improves BLEU.
arXiv Detail & Related papers (2021-09-13T20:37:58Z) - On Minimum Word Error Rate Training of the Hybrid Autoregressive
Transducer [40.63693071222628]
We study the minimum word error rate (MWER) training of Hybrid Autoregressive Transducer (HAT)
From experiments with around 30,000 hours of training data, we show that MWER training can improve the accuracy of HAT models.
arXiv Detail & Related papers (2020-10-23T21:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.