Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- URL: http://arxiv.org/abs/2402.02563v4
- Date: Sat, 24 Aug 2024 14:46:55 GMT
- Title: Synergy-of-Thoughts: Eliciting Efficient Reasoning in Hybrid Language Models
- Authors: Yu Shang, Yu Li, Fengli Xu, Yong Li,
- Abstract summary: Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but the associated expensive API cost greatly limits the real application.
We propose "Synergy of Thoughts"(SoT) to unleash the synergistic potential of hybrid LLMs with different scales for efficient reasoning.
We show that SoT substantially reduces the API cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity.
- Score: 19.466985579720507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but the associated expensive API cost greatly limits the real application. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing API cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts"(SoT) to unleash the synergistic potential of hybrid LLMs with different scales for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost intuitive thoughts, which resembles the parallel intuitions produced by System 1. We then design a confidence evaluator where the intuitive thoughts are cross-evaluated and introduce a controllable threshold mechanism to decide their mutual conflict. If these intuitive thoughts exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning results. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the API cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%.
Related papers
- The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks [96.27754404942364]
Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited.
This paper introduces and analyzes overthinking in LRMs.
We observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement.
arXiv Detail & Related papers (2025-02-12T09:23:26Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.
We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks.
We identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts.
We propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts.
arXiv Detail & Related papers (2025-01-30T18:58:18Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)
FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.
We introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - Self-Harmonized Chain of Thought [8.540320749424172]
Chain-of-thought (CoT) prompting has demonstrated the capacity of large language models to perform complex reasoning through intermediate steps.
We propose ECHO, a novel method that unifies diverse solution paths into a consistent and effective reasoning pattern.
arXiv Detail & Related papers (2024-09-06T06:57:04Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks.
Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer.
This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale.
We propose a robust post-thinking mechanism to generate answers before rationale.
arXiv Detail & Related papers (2024-04-14T07:19:27Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.