A Periodic Bayesian Flow for Material Generation
- URL: http://arxiv.org/abs/2502.02016v1
- Date: Tue, 04 Feb 2025 05:07:13 GMT
- Title: A Periodic Bayesian Flow for Material Generation
- Authors: Hanlin Wu, Yuxuan Song, Jingjing Gong, Ziyao Cao, Yawen Ouyang, Jianbing Zhang, Hao Zhou, Wei-Ying Ma, Jingjing Liu,
- Abstract summary: We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow.
To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism.
Experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN.
- Score: 20.62877413439857
- License:
- Abstract: Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.
Related papers
- Generative Modeling with Bayesian Sample Inference [50.07758840675341]
We derive a novel generative model from the simple act of Gaussian posterior inference.
Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.
Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
arXiv Detail & Related papers (2025-02-11T14:27:10Z) - Symmetry-Aware Bayesian Flow Networks for Crystal Generation [0.562479170374811]
We introduce SymmBFN, a novel symmetry-aware Bayesian Flow Network (BFN) for crystalline material generation.
SymmBFN substantially improves efficiency, generating stable structures at least 50 times faster than the next-best method.
Our findings establish BFNs as an effective tool for accelerating the discovery of crystalline materials.
arXiv Detail & Related papers (2025-02-05T13:14:50Z) - FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions [16.68310253042657]
FlowLLM is a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials.
Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by $sim50%$.
arXiv Detail & Related papers (2024-10-30T19:15:43Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - FlowMM: Generating Materials with Riemannian Flow Matching [16.68310253042657]
We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks.
Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures.
In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations.
arXiv Detail & Related papers (2024-06-07T07:46:23Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal Structure Prediction by Joint Equivariant Diffusion [27.52168842448489]
Crystal Structure Prediction (CSP) is crucial in various scientific disciplines.
This paper proposes DiffCSP, a novel diffusion model to learn the structure distribution from stable crystals.
arXiv Detail & Related papers (2023-07-30T15:46:33Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Flow-based sampling in the lattice Schwinger model at criticality [54.48885403692739]
Flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications.
We provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.