論文の概要: AdaptBot: Combining LLM with Knowledge Graphs and Human Input for Generic-to-Specific Task Decomposition and Knowledge Refinement
- arxiv url: http://arxiv.org/abs/2502.02067v2
- Date: Thu, 06 Mar 2025 18:09:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:56:50.037713
- Title: AdaptBot: Combining LLM with Knowledge Graphs and Human Input for Generic-to-Specific Task Decomposition and Knowledge Refinement
- Title(参考訳): AdaptBot:LLMを知識グラフと組み合わせた汎用的なタスク分解と知識再構成のためのヒューマン入力
- Authors: Shivam Singh, Karthik Swaminathan, Nabanita Dash, Ramandeep Singh, Snehasis Banerjee, Mohan Sridharan, Madhava Krishna,
- Abstract要約: 膨大な知識に基づいて訓練された大規模言語モデル(LLM)は、そのようなタスクを完了するための抽象的なアクションのシーケンスを予測するのに使用できる。
我々のフレームワークは、LLMが提供するジェネリックな予測と知識グラフにエンコードされた以前のドメイン知識を活用することで、これらの課題に対処する。
ロボットはまた、既存の知識を洗練するために人間の入力を要請し、使用する。
- 参考スコア(独自算出の注目度): 11.704158944329741
- License:
- Abstract: An embodied agent assisting humans is often asked to complete new tasks, and there may not be sufficient time or labeled examples to train the agent to perform these new tasks. Large Language Models (LLMs) trained on considerable knowledge across many domains can be used to predict a sequence of abstract actions for completing such tasks, although the agent may not be able to execute this sequence due to task-, agent-, or domain-specific constraints. Our framework addresses these challenges by leveraging the generic predictions provided by LLM and the prior domain knowledge encoded in a Knowledge Graph (KG), enabling an agent to quickly adapt to new tasks. The robot also solicits and uses human input as needed to refine its existing knowledge. Based on experimental evaluation in the context of cooking and cleaning tasks in simulation domains, we demonstrate that the interplay between LLM, KG, and human input leads to substantial performance gains compared with just using the LLM. Project website{\S}: https://sssshivvvv.github.io/adaptbot/
- Abstract(参考訳): 人間を助ける具体的エージェントは、しばしば新しいタスクを完了するよう要求されるが、これらの新しいタスクを実行するためにエージェントを訓練する十分な時間やラベル付き例は存在しないかもしれない。
大規模言語モデル(LLM)は、多くのドメインにまたがる知識に基づいて訓練され、そのようなタスクを完了するための抽象的なアクションのシーケンスを予測するのに使用できるが、エージェントはタスク、エージェント、ドメイン固有の制約のためにこのシーケンスを実行することができないかもしれない。
我々のフレームワークは、LLMが提供する一般的な予測と知識グラフ(KG)に符号化された事前ドメイン知識を活用し、エージェントが新しいタスクに迅速に適応できるようにすることで、これらの課題に対処する。
ロボットはまた、既存の知識を洗練するために人間の入力を要請し、使用する。
シミュレーション領域における調理・清掃作業の文脈における実験的な評価から,LLM,KG,人的入力の相互作用が,単にLLMを使用する場合と比較して大きな性能向上をもたらすことを示した。
Project website{\S}: https://ssshivvv.github.io/adaptbot/
関連論文リスト
- VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks [100.3234156027118]
本稿では、ユニバーサルLCMタスク学習を評価するためのオープンソースのベンチマークであるVLABenchを紹介する。
VLABenchは、タスクのカテゴリごとに強いランダム化と合計2000以上のオブジェクトを備えた、慎重に設計された100のタスクカテゴリを提供する。
このベンチマークは、メッシュとテクスチャ、空間関係、意味的命令、物理法則、知識伝達、推論の理解を含む複数の能力を評価する。
論文 参考訳(メタデータ) (2024-12-24T06:03:42Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
本研究は, 観察空間と行動空間を簡略化することで, LLMベースのWebエージェントを強化する。
AgentOccam は以前の最先端および同時処理を 9.8 (+29.4%) と 5.9 (+15.8%) で上回っている。
論文 参考訳(メタデータ) (2024-10-17T17:50:38Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
本稿では,スクリーンショット画像のみを通して環境を知覚するエージェントを提案する。
大規模言語モデルの推論能力を活用することで,大規模人間の実演データの必要性を解消する。
AgentはMiniWoB++の平均成功率は94.5%、WebShopの平均タスクスコアは62.3である。
論文 参考訳(メタデータ) (2024-06-11T05:21:20Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [52.348929737851165]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - Improving Knowledge Extraction from LLMs for Task Learning through Agent
Analysis [4.055489363682198]
大規模言語モデル(LLM)は、タスク学習の知識源として大きな可能性を秘めている。
プロンプト工学は、LLMから知識を引き出すのに有効であることが示されているが、同時に、新しいタスクを具現化したエージェント学習のための、適切な、状況に根ざした知識を得るには不十分である。
本稿では,認知エージェントアプローチであるSTARSについて述べる。これは,迅速なエンジニアリングを拡張し,その制限を緩和し,エージェントがネイティブ言語能力,具体化,環境,ユーザ嗜好に適合する新たなタスク知識を取得できるようにする。
論文 参考訳(メタデータ) (2023-06-11T20:50:14Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。