論文の概要: IPO: Iterative Preference Optimization for Text-to-Video Generation
- arxiv url: http://arxiv.org/abs/2502.02088v1
- Date: Tue, 04 Feb 2025 08:14:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:20.448875
- Title: IPO: Iterative Preference Optimization for Text-to-Video Generation
- Title(参考訳): IPO: テキスト・ビデオ・ジェネレーションの反復的優先最適化
- Authors: Xiaomeng Yang, Zhiyu Tan, Xuecheng Nie, Hao Li,
- Abstract要約: 人間のフィードバックを取り入れて生成した映像の質を高めるための反復選好最適化手法を提案する。
IPOは、直接選好最適化(Direct Preference Optimization)やポイントワイズスコア(point-wise score)のように、ビデオ世代をペアワイズランキングで正当化する批判モデルを活用する。
さらに、IPOは批判モデルにマルチモダリティの大規模言語モデルを導入し、リトレーニングや緩和を必要とせず、自動的に好みラベルを割り当てることを可能にする。
- 参考スコア(独自算出の注目度): 15.763879468841818
- License:
- Abstract: Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark. We will release our source codes, models as well as dataset to advance future research and applications.
- Abstract(参考訳): ビデオファウンデーションモデルは、ネットワークアップグレードとモデルスケールアップの助けを借りて、大きな進歩を遂げた。
しかし、不満足な世代品質のため、アプリケーションの要件を満たすことは依然として困難である。
この問題を解決するために,本稿では,ポストトレーニングの観点から,ビデオ基礎モデルと人間の嗜好を一致させることを提案する。
そこで本研究では,人間のフィードバックを取り入れた映像品質向上のための反復選好最適化手法を提案する。
具体的には、直接選好最適化(Direct Preference Optimization)や、Kahneman-Tversky Optimization(Kahneman-Tversky Optimization)のようなポイントワイドスコア(pointwise score)において、ビデオ世代をペアワイズランキングで正当化する批判モデルを利用している。
これを踏まえて、IPOはビデオファンデーションモデルを最適化し、好みのフィードバックからのシグナルを誘導し、被験者の一貫性、動きの滑らかさ、美的品質などのビデオ品質を改善する。
さらに、IPOは批判モデルにマルチモダリティの大規模言語モデルを導入し、リトレーニングや緩和を必要とせず、自動的に好みラベルを割り当てることを可能にする。
このようにしてIPOは、面倒な手作業によるラベリングを必要とせずに、反復的に複数ラウンドの優先最適化を効率的に行うことができる。
総合的な実験により、提案されたIPOは、事前訓練されたモデルの映像生成品質を効果的に改善し、わずか2Bパラメータのモデルが5Bパラメータのモデルを上回るのに役立つことが示されている。
さらに、IPOはVBenchベンチマークで最先端のパフォーマンスを達成した。
私たちは、将来の研究とアプリケーションを進めるために、ソースコード、モデル、およびデータセットをリリースします。
関連論文リスト
- Scalable Ranked Preference Optimization for Text-to-Image Generation [76.16285931871948]
DPOトレーニングのための大規模および完全合成データセット収集のためのスケーラブルなアプローチについて検討する。
ペア画像の嗜好は、事前訓練された報酬関数を用いて生成され、アノテーションプロセスに人間を巻き込む必要がなくなる。
ランキングフィードバックを用いてDPOに基づく手法を強化するためにRandonDPOを導入する。
論文 参考訳(メタデータ) (2024-10-23T16:42:56Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - SePPO: Semi-Policy Preference Optimization for Diffusion Alignment [67.8738082040299]
本稿では、報酬モデルやペアの人間注釈データに頼ることなく、DMと好みを一致させる選好最適化手法を提案する。
テキスト・ツー・イメージとテキスト・ツー・ビデオのベンチマークでSePPOを検証する。
論文 参考訳(メタデータ) (2024-10-07T17:56:53Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
我々は、NDCGを異なる代理損失で近似することで、エンドツーエンドの選好最適化アルゴリズムを開発する。
OPOは、AlpacaEvalのような評価セットや一般的なベンチマークにおいて、既存のペアワイズおよびリストワイズアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-10-06T03:49:28Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
我々は、追加の報酬モデルを訓練することなく、自己学習による選好学習を行う、選好最適化のためのフレームワークTSOを提案する。
TSOは、モデル行列を構築し、人間の嗜好応答を取り入れることで、応答の多様性を高める。
実験の結果、TSOは様々なアライメント評価ベンチマークにおいて、既存の主流手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-31T05:37:01Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Filtered Direct Preference Optimization [7.060398061192042]
人間からのフィードバックからの強化学習(RLHF)は、言語モデルと人間の嗜好の整合において重要な役割を果たす。
本稿では、直接選好最適化(DPO)に着目して、選好データセットにおけるテキスト品質の問題に対処する。
フィルタされた直接選好最適化(fDPO)と呼ばれるDPOの拡張を提案する。
論文 参考訳(メタデータ) (2024-04-22T03:05:19Z) - Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward [118.65089648651308]
本稿では,映像コンテンツのプロキシとして詳細な動画キャプションを利用する新しいフレームワークを提案する。
本稿では,DPOによる報酬の調整により,ビデオ質問応答(QA)タスクにおけるビデオLMMの性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-04-01T17:28:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。