論文の概要: Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
- arxiv url: http://arxiv.org/abs/2504.15843v2
- Date: Fri, 25 Apr 2025 07:47:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.786318
- Title: Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
- Title(参考訳): Pre-DPO:誘導基準モデルを用いた直接選好最適化におけるデータ利用の改善
- Authors: Junshu Pan, Wei Shen, Shulin Huang, Qiji Zhou, Yue Zhang,
- Abstract要約: 提案するPre-DPO(Pre-DPO)は,指導基準モデルを活用することにより,嗜好最適化性能を向上させる,シンプルで効果的なDPOベースのトレーニングパラダイムである。
AlpacaEval 2.0とArena-Hard v0.1ベンチマークの大規模な実験は、Pre-DPOがDPOとSimPOの両方のパフォーマンスを一貫して改善していることを示している。
- 参考スコア(独自算出の注目度): 20.623037493149507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
- Abstract(参考訳): 直接選好最適化(DPO)は,大規模言語モデル(LLM)に対する人間からのフィードバック(RLHF)からの強化学習を,明示的な報酬モデルなしで直接ヒトの選好を最適化することによって単純化する。
DPOトレーニング中、参照モデルがデータ重み調整器の役割を担っていることがわかった。
しかし、DPOで同一のポリシーと参照モデルを初期化する一般的な手法は、非効率なデータ利用を招き、性能天井を課す。
一方、SimPO(Simple Preference Optimization)における参照モデルが欠如していることは、トレーニングの堅牢性を低下させ、破滅的な忘れ込みを防ぐために厳格な条件を必要とする。
そこで本研究では,指導基準モデルを活用することにより,優先最適化性能を向上させる,シンプルで効果的なDPOベースのトレーニングパラダイムであるPre-DPOを提案する。
本発明の基準モデルは、トレーニング嗜好データを介して達成可能な最適な政策状態の見通しを提供し、モデルに適した試料により高い重量を適応的に割り当て、より適さない試料に低い重量を割り当てる誘導機構として機能する。
AlpacaEval 2.0とArena-Hard v0.1ベンチマークの大規模な実験は、Pre-DPOが外部モデルや追加データに頼ることなく、DPOとSimPOの両方のパフォーマンスを一貫して改善していることを示している。
関連論文リスト
- A Survey of Direct Preference Optimization [103.59317151002693]
LLM(Large Language Models)は、前例のない生成能力を示す。
人的価値との整合性は、有用で無害なデプロイメントを保証する上で、依然として重要です。
直接優先度最適化(DPO)は、最近、合理化された代替案として注目されている。
論文 参考訳(メタデータ) (2025-03-12T08:45:15Z) - SPRec: Self-Play to Debias LLM-based Recommendation [23.875509546540904]
大規模言語モデル(LLM)はレコメンデーションシステムにおいて大きな注目を集めている。
SPRecは、過剰勧告を緩和し、追加のデータや手動による介入を必要とせずに公平性を向上させるために設計された新しいセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-12-12T12:53:30Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
人間の嗜好からの学習は、ダウンストリームタスクにおいて、事前学習されたLLMを人間の嗜好に合わせるために、大規模言語モデル(LLM)の微調整ステップで使用されるパラダイムである。
近年,簡易なRLフリー手法でアライメント問題を解決するために,DPO(Direct Preference Optimization)が提案されている。
本稿では、DPOにおける$beta$の動作メカニズムを分析し、RLアルゴリズムとDPOの構文差を明らかにし、DPOの単純化による潜在的な不足について理解する。
論文 参考訳(メタデータ) (2024-08-19T09:29:31Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
学習を通して嗜好が収集されるオンライン環境において,識別器誘導型DPOであるD2POを提案する。
金の選好を収集する際、これらは政策の訓練だけでなく、銀ラベルによる政策訓練のためのさらに総合的なデータに対する差別的な反応評価モデルを訓練するために利用します。
DPOで政策を訓練し、従来のPPOを上回り、政策モデルから分離した差別者を維持することの恩恵を受けるのが最も効果的である。
論文 参考訳(メタデータ) (2024-05-02T17:44:41Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
本研究では,人選好によるアライメントトレーニングを迅速化するExPOという手法を提案する。
我々は、ExPOがトレーニングされたDPOモデルを20%のステップで強化し、完全に訓練されたモデルを上回ることを実証した。
ExPO は AlpacaEval 2.0 と MT-Bench ベンチマークにおいて,既存のオープンソース LLM を特に改善している。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - Policy Optimization in RLHF: The Impact of Out-of-preference Data [17.126977660436225]
本稿では、DPO(Direct Preference Optimization)とReward-Model-Based Policy Optimization(RMB-PO)の2つの一般的なアライメント手法について検討する。
RMB-PO+とも呼ばれるRMB-POの変種も検討されている。
特に、DPOと比較して、RMB-POはポリシー生成データを使用し、RMB-PO+は新たな好みのないデータを活用する。
論文 参考訳(メタデータ) (2023-12-17T02:14:15Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。