Pareto Set Prediction Assisted Bilevel Multi-objective Optimization
- URL: http://arxiv.org/abs/2409.03328v1
- Date: Thu, 5 Sep 2024 08:04:11 GMT
- Title: Pareto Set Prediction Assisted Bilevel Multi-objective Optimization
- Authors: Bing Wang, Hemant K. Singh, Tapabrata Ray,
- Abstract summary: We address problems with multiple objectives (BLMOP) at both levels.
The proposed approach is competitive across a range of problems, including both deceptive and non-deceptive.
- Score: 2.3293561091456283
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bilevel optimization problems comprise an upper level optimization task that contains a lower level optimization task as a constraint. While there is a significant and growing literature devoted to solving bilevel problems with single objective at both levels using evolutionary computation, there is relatively scarce work done to address problems with multiple objectives (BLMOP) at both levels. For black-box BLMOPs, the existing evolutionary techniques typically utilize nested search, which in its native form consumes large number of function evaluations. In this work, we propose to reduce this expense by predicting the lower level Pareto set for a candidate upper level solution directly, instead of conducting an optimization from scratch. Such a prediction is significantly challenging for BLMOPs as it involves one-to-many mapping scenario. We resolve this bottleneck by supplementing the dataset using a helper variable and construct a neural network, which can then be trained to map the variables in a meaningful manner. Then, we embed this initialization within a bilevel optimization framework, termed Pareto set prediction assisted evolutionary bilevel multi-objective optimization (PSP-BLEMO). Systematic experiments with existing state-of-the-art methods are presented to demonstrate its benefit. The experiments show that the proposed approach is competitive across a range of problems, including both deceptive and non-deceptive problems
Related papers
- A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints [66.61399765513383]
We develop a BLOCC algorithm to tackle BiLevel Optimization problems with Coupled Constraints.
We demonstrate its effectiveness on two well-known real-world applications.
arXiv Detail & Related papers (2024-06-14T15:59:36Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Fast Adaptive Federated Bilevel Optimization [14.579475552088692]
We propose a novel adaptive federated bilevel optimization algorithm (i.e.,AdaFBiO) to solve the distributed bilevel optimization problems.
AdaFBiO uses the unified adaptive matrices to flexibly incorporate various adaptive learning rates to update variables in both UL and LL problems.
We provide a convergence analysis framework for our AdaFBiO algorithm, and prove it needs the sample of complexity of $tildeO(epsilon-3)$ with communication complexity of $tildeO(epsilon-2)$ to obtain an $
arXiv Detail & Related papers (2022-11-02T13:55:47Z) - Gradient-based Bi-level Optimization for Deep Learning: A Survey [14.39891675968109]
Bi-level optimization, especially the gradient-based category, has been widely used in the deep learning community.
We first give a formal definition of the gradient-based bi-level optimization.
We then discuss four bi-level optimization solvers to update the outer variable.
arXiv Detail & Related papers (2022-07-24T11:23:31Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
We study Federated Bilevel Optimization problems. Specifically, we first propose the FedBiO, a deterministic gradient-based algorithm.
We show FedBiO has complexity of $O(epsilon-1.5)$.
Our algorithms show superior performances compared to other baselines in numerical experiments.
arXiv Detail & Related papers (2022-05-03T16:40:22Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - A Value-Function-based Interior-point Method for Non-convex Bi-level
Optimization [38.75417864443519]
Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest.
We propose a new interior Bi-level Value-based Interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective.
arXiv Detail & Related papers (2021-06-15T09:10:40Z) - A Generic First-Order Algorithmic Framework for Bi-Level Programming
Beyond Lower-Level Singleton [49.23948907229656]
Bi-level Descent Aggregation is a flexible and modularized algorithmic framework for generic bi-level optimization.
We derive a new methodology to prove the convergence of BDA without the LLS condition.
Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules.
arXiv Detail & Related papers (2020-06-07T05:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.