Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
- URL: http://arxiv.org/abs/2502.02190v1
- Date: Tue, 04 Feb 2025 10:13:13 GMT
- Title: Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
- Authors: Maxence Faldor, Robert Tjarko Lange, Antoine Cully,
- Abstract summary: Quality-Diversity is a family of evolutionary algorithms that generate diverse populations of high-performing solutions.
We propose using meta-learning to automatically discover novel Quality-Diversity algorithms.
- Score: 8.5083347559272
- License:
- Abstract: Quality-Diversity has emerged as a powerful family of evolutionary algorithms that generate diverse populations of high-performing solutions by implementing local competition principles inspired by biological evolution. While these algorithms successfully foster diversity and innovation, their specific mechanisms rely on heuristics, such as grid-based competition in MAP-Elites or nearest-neighbor competition in unstructured archives. In this work, we propose a fundamentally different approach: using meta-learning to automatically discover novel Quality-Diversity algorithms. By parameterizing the competition rules using attention-based neural architectures, we evolve new algorithms that capture complex relationships between individuals in the descriptor space. Our discovered algorithms demonstrate competitive or superior performance compared to established Quality-Diversity baselines while exhibiting strong generalization to higher dimensions, larger populations, and out-of-distribution domains like robot control. Notably, even when optimized solely for fitness, these algorithms naturally maintain diverse populations, suggesting meta-learning rediscovers that diversity is fundamental to effective optimization.
Related papers
- Dominated Novelty Search: Rethinking Local Competition in Quality-Diversity [6.576386892835931]
We introduce Dominated Novelty Search, a Quality-Diversity algorithm that implements local competition through dynamic fitness transformations.
Our experiments show that Dominated Novelty Search significantly outperforms existing approaches across standard Quality-Diversity benchmarks.
arXiv Detail & Related papers (2025-02-01T23:15:50Z) - Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - cMLSGA: A Co-Evolutionary Multi-Level Selection Genetic Algorithm for
Multi-Objective Optimization [0.0]
Multi-Level Selection Genetic Algorithm (MLSGA) already shows good performance on range of problems.
This paper proposes a distinct set of co-evolutionary mechanisms, which defines co-evolution as competition between collectives rather than individuals.
arXiv Detail & Related papers (2021-04-22T13:52:21Z) - Epistocracy Algorithm: A Novel Hyper-heuristic Optimization Strategy for
Solving Complex Optimization Problems [1.471992435706872]
This paper proposes a novel evolutionary algorithm called Epistocracy which incorporates human socio-political behavior and intelligence to solve complex optimization problems.
The inspiration of the Epistocracy algorithm originates from a political regime where educated people have more voting power than the uneducated or less educated.
Experimental results show that the Epistocracy algorithm outperforms the tested state-of-the-art evolutionary and swarm intelligence algorithms in terms of performance, precision, and robustness.
arXiv Detail & Related papers (2021-01-30T19:07:09Z) - Quality-Diversity Optimization: a novel branch of stochastic
optimization [5.677685109155078]
Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one.
Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space.
arXiv Detail & Related papers (2020-12-08T09:52:50Z) - Quality and Diversity in Evolutionary Modular Robotics [1.290382979353427]
In Evolutionary Robotics a population of solutions is evolved to optimize robots that solve a given task.
Quality Diversity algorithms try to overcome premature convergence by introducing additional measures that reward solutions for being different.
arXiv Detail & Related papers (2020-08-05T13:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.