論文の概要: Survey of Quantization Techniques for On-Device Vision-based Crack Detection
- arxiv url: http://arxiv.org/abs/2502.02269v1
- Date: Tue, 04 Feb 2025 12:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:11.018551
- Title: Survey of Quantization Techniques for On-Device Vision-based Crack Detection
- Title(参考訳): オンデバイスビジョンに基づくき裂検出のための量子化技術の検討
- Authors: Yuxuan Zhang, Luciano Sebastian Martinez-Rau, Quynh Nguyen Phuong Vu, Bengt Oelmann, Sebastian Bader,
- Abstract要約: 構造的健康モニタリング(SHM)は、インフラの安全性と長寿を保証する。
UAVと組み合わせた視覚ベースの亀裂検出は、従来のセンサーベースのSHM手法の限界に対処する。
本研究では、MobileNetV1x0.25とMobileNetV2x0.5の2つの軽量畳み込みニューラルネットワークモデルを評価する。
- 参考スコア(独自算出の注目度): 5.967661928760498
- License:
- Abstract: Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure by enabling timely damage detection. Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods but requires the deployment of efficient deep learning models on resource-constrained devices. This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5, across TensorFlow, PyTorch, and Open Neural Network Exchange platforms using three quantization techniques: dynamic quantization, post-training quantization (PTQ), and quantization-aware training (QAT). Results show that QAT consistently achieves near-floating-point accuracy, such as an F1-score of 0.8376 for MBNV2x0.5 with Torch-QAT, while maintaining efficient resource usage. PTQ significantly reduces memory and energy consumption but suffers from accuracy loss, particularly in TensorFlow. Dynamic quantization preserves accuracy but faces deployment challenges on PyTorch. By leveraging QAT, this work enables real-time, low-power crack detection on UAVs, enhancing safety, scalability, and cost-efficiency in SHM applications, while providing insights into balancing accuracy and efficiency across different platforms for autonomous inspections.
- Abstract(参考訳): 構造的健康モニタリング(SHM)は、タイムリーな損傷検出を可能にすることにより、インフラの安全性と長寿を保証する。
UAVと組み合わせた視覚ベースの亀裂検出は、従来のセンサーベースのSHM手法の限界に対処するが、リソース制約のあるデバイスに効率的なディープラーニングモデルを配置する必要がある。
本研究では、動的量子化、後トレーニング量子化(PTQ)、量子化認識トレーニング(QAT)という3つの手法を用いて、TensorFlow、PyTorch、Open Neural Network Exchangeプラットフォームにまたがる2つの軽量畳み込みニューラルネットワークモデル、MobileNetV1x0.25とMobileNetV2x0.5を評価する。
その結果,Torch-QATとMBNV2x0.5のF1スコアは0.8376,Torch-QATは効率の良い資源使用率を維持した。
PTQはメモリとエネルギー消費を大幅に削減するが、特にTensorFlowでは精度の低下に悩まされる。
動的量子化は正確性を維持するが、PyTorch上でのデプロイメントの課題に直面している。
QATを活用することで、UAVのリアルタイムかつ低消費電力なクラック検出を可能にし、SHMアプリケーションの安全性、スケーラビリティ、コスト効率を向上させると同時に、自律的な検査のためのさまざまなプラットフォーム間での正確性と効率のバランスに関する洞察を提供する。
関連論文リスト
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
スパイキングニューラルネットワーク(SNN)は効率を向上させるという目標を共有しているが、ニューラルネットワーク推論の消費電力を減らすために、"イベント駆動"アプローチを採用する。
本稿では, ステートフルニューロンに対するQAT方式として, (i) 均一量子化戦略, (ii) 重み量子化の確立された方法, (ii) しきい値中心量子化の2つを紹介する。
以上の結果から,発火閾値付近の量子化レベルの密度の増加は,複数のベンチマークデータセットの精度を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T03:07:16Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
本稿では、SynSense Speckニューロモルフィックチップ上に展開されたイベントベースの顔検出のためのオンチップスパイクニューラルネットワークの最初の例を示す。
トレーニングに用いるオフチップクロック駆動シミュレーションとオンチップイベント駆動推論との精度の相違について述べる。
オンチップ顔検出のmAP[0.5]は0.6で、20mWしか消費しない。
論文 参考訳(メタデータ) (2023-12-21T19:23:02Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - Neural Network Quantization with AI Model Efficiency Toolkit (AIMET) [15.439669159557253]
AIモデル効率ツールキット(AIMET)を用いたニューラルネットワーク量子化の概要について述べる。
AIMETは、モデル最適化に必要な作業を容易にするために設計された最先端の量子化および圧縮アルゴリズムのライブラリである。
我々は、PTQとQAT、コード例、実用的なヒントを網羅し、AIMETによる量子化の実践的なガイドを提供する。
論文 参考訳(メタデータ) (2022-01-20T20:35:37Z) - On the Tradeoff between Energy, Precision, and Accuracy in Federated
Quantized Neural Networks [68.52621234990728]
無線ネットワーク上でのフェデレーション学習(FL)は、精度、エネルギー効率、精度のバランスをとる必要がある。
本稿では,ローカルトレーニングとアップリンク伝送の両方において,有限レベルの精度でデータを表現できる量子化FLフレームワークを提案する。
我々のフレームワークは標準的なFLモデルと比較してエネルギー消費量を最大53%削減できる。
論文 参考訳(メタデータ) (2021-11-15T17:00:03Z) - Feature Analysis for ML-based IIoT Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)の実装に強力な機械学習モデルが採用されている。
検出精度と計算効率を最大化するデータ特徴の適切なセットを選択することが重要である。
本稿では,ネットワーク攻撃の重要性と予測力の観点から,最適な特徴セットを広範囲に分析する。
論文 参考訳(メタデータ) (2021-08-29T02:19:37Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
フル量子化トレーニング(FQT)は、ニューラルネットワークモデルのアクティベーション、重み、勾配を定量化することで、低ビット幅のハードウェアを使用する。
FQTの最大の課題は、特に勾配量子化が収束特性にどのように影響するかという理論的な理解の欠如である。
論文 参考訳(メタデータ) (2020-10-27T13:57:33Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。