論文の概要: Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- arxiv url: http://arxiv.org/abs/2405.02630v3
- Date: Mon, 06 Jan 2025 22:30:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:30.883915
- Title: Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks
- Title(参考訳): 大規模量子機械学習の検証:テンソルネットワークを用いた量子支援ベクトルマシンの効率的なシミュレーション
- Authors: Kuan-Cheng Chen, Tai-Yue Li, Yun-Yuan Wang, Simon See, Chun-Chieh Wang, Robert Wille, Nan-Yow Chen, An-Cheng Yang, Chun-Yu Lin,
- Abstract要約: 本稿では,大規模量子回路のシミュレーションに有効なテンソルネットワーク方式を提案する。
我々のシミュレーターは、最大784キュービットのQSVMをうまく処理し、1つの高性能GPU上で数秒でシミュレーションを完了する。
- 参考スコア(独自算出の注目度): 17.80970950814512
- License:
- Abstract: We present an efficient tensor-network-based approach for simulating large-scale quantum circuits, demonstrated using Quantum Support Vector Machines (QSVMs). Our method effectively reduces exponential runtime growth to near-quadratic scaling with respect to the number of qubits in practical scenarios. Traditional state-vector simulations become computationally infeasible beyond approximately 50 qubits; in contrast, our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU. Furthermore, by employing the Message Passing Interface (MPI) in multi-GPU environments, the approach shows strong linear scalability, reducing computation time as dataset size increases. We validate the framework on the MNIST and Fashion MNIST datasets, achieving successful multiclass classification and emphasizing the potential of QSVMs for high-dimensional data analysis. By integrating tensor-network techniques with high-performance computing resources, this work demonstrates both the feasibility and scalability of large-qubit quantum machine learning models, providing a valuable validation tool in the emerging Quantum-HPC ecosystem.
- Abstract(参考訳): 本稿では,量子支援ベクトルマシン(QSVM)を用いて,大規模量子回路のシミュレーションを行う。
本手法は, 実シナリオにおけるキュービット数に対して, 指数的ランタイム成長をほぼ4次スケーリングに効果的に還元する。
従来の状態ベクトルシミュレーションは、約50キュービットを超える計算不可能となり、我々のシミュレータは、最大784キュービットのQSVMをうまく処理し、1つの高性能GPU上で数秒でシミュレーションを完了する。
さらに、マルチGPU環境でメッセージパッシングインタフェース(MPI)を利用することで、強力な線形スケーラビリティを示し、データセットのサイズが大きくなるにつれて計算時間を短縮する。
我々は、MNISTとFashion MNISTデータセットのフレームワークを検証するとともに、マルチクラス分類を成功させ、高次元データ解析のためのQSVMの可能性を強調した。
この研究は、テンソルネットワーク技術と高性能コンピューティングリソースを統合することで、大規模量子機械学習モデルの実現可能性とスケーラビリティを実証し、新興のQuantum-HPCエコシステムに価値ある検証ツールを提供する。
関連論文リスト
- Machine Learning in the Quantum Age: Quantum vs. Classical Support
Vector Machines [0.0]
この研究は、古典的および量子計算パラダイムにおける機械学習アルゴリズムの有効性を判断する努力である。
我々は、Irisデータセット上で量子ハードウェアで動作する古典的なSVMと量子サポートベクトルマシンの分類技術を精査する。
論文 参考訳(メタデータ) (2023-10-17T01:06:59Z) - cuQuantum SDK: A High-Performance Library for Accelerating Quantum
Science [7.791505883503921]
本稿では,GPU加速量子回路シミュレーションのための実装可能なプリミティブの最先端ライブラリであるNVIDIA cuQuantum SDKを紹介する。
cuQuantum SDKは、量子情報科学コミュニティが開発した量子回路シミュレータの高速化とスケールアップを目的として開発された。
論文 参考訳(メタデータ) (2023-08-03T19:28:02Z) - Quantum support vector machines for classification and regression on a trapped-ion quantum computer [9.736685719039599]
量子支援ベクトル分類(QSVC)と量子支援ベクトル回帰(QSVR)に基づく量子機械学習モデルについて検討する。
本稿では,これらのモデルについて,ノイズと非ノイズの双方を考慮した量子回路シミュレータとIonQ Harmony量子プロセッサを用いて検討する。
分類タスクでは, 捕捉イオン量子コンピュータの4量子ビットを用いたQSVCモデルの性能は, ノイズレス量子回路シミュレーションで得られたものと同等であった。
論文 参考訳(メタデータ) (2023-07-05T08:06:41Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - Cloud on-demand emulation of quantum dynamics with tensor networks [48.7576911714538]
プログラム可能なアナログ量子処理ユニット(QPU)を模擬したテンソルネットワークに基づくエミュレータを導入する。
ソフトウェアパッケージは、HPCクラスタ上でジョブを実行し、それらをQPUデバイスにディスパッチするための共通インターフェースを提供するクラウドプラットフォームに完全に統合されている。
論文 参考訳(メタデータ) (2023-02-10T14:08:05Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
本稿では、量子機械学習(QML)と呼ばれる機械学習アルゴリズムに適用されたQCの高速化性能について分析する。
実際の量子コンピュータの限界により、QML法はQiskitやIBM Quantumといったオープンソースの量子シミュレータ上で実装された。
興味深いことに、実験結果は、SSC攻撃の古典的アプローチと比較して計算時間と精度の低下を示すことによって、QCの約束を早めることと異なる。
論文 参考訳(メタデータ) (2022-04-04T21:16:06Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
本稿では,量子支援ベクトルマシン(QSVM)アルゴリズムとその回路バージョンについて検討する。
量子回路におけるトレーニングおよびテストデータサンプルを符号化し,QSVM回路実装手法の効率性を計算する。
我々は、現在のNISQデバイスにQSVMアルゴリズムを適用する際に直面する技術的困難を強調した。
論文 参考訳(メタデータ) (2021-12-13T18:59:39Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。