論文の概要: Density Ratio Estimation with Conditional Probability Paths
- arxiv url: http://arxiv.org/abs/2502.02300v1
- Date: Tue, 04 Feb 2025 13:13:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:36.499920
- Title: Density Ratio Estimation with Conditional Probability Paths
- Title(参考訳): 条件付き確率経路を用いた密度比推定
- Authors: Hanlin Yu, Arto Klami, Aapo Hyvärinen, Anna Korba, Omar Chehab,
- Abstract要約: 条件変数に基づく時間スコア推定のための新しいフレームワークを提案する。
従来の手法と比較して,本手法は時間スコアの学習を高速化し,密度比の推定精度が向上することを示した。
- 参考スコア(独自算出の注目度): 14.251729168309067
- License:
- Abstract: Density ratio estimation in high dimensions can be reframed as integrating a certain quantity, the time score, over probability paths which interpolate between the two densities. In practice, the time score has to be estimated based on samples from the two densities. However, existing methods for this problem remain computationally expensive and can yield inaccurate estimates. Inspired by recent advances in generative modeling, we introduce a novel framework for time score estimation, based on a conditioning variable. Choosing the conditioning variable judiciously enables a closed-form objective function. We demonstrate that, compared to previous approaches, our approach results in faster learning of the time score and competitive or better estimation accuracies of the density ratio on challenging tasks. Furthermore, we establish theoretical guarantees on the error of the estimated density ratio.
- Abstract(参考訳): 高次元における密度比の推定は、2つの密度の間で補間される確率パスに対して、ある量、時間スコアを統合するものとして再編成することができる。
実際には、2つの密度のサンプルに基づいてタイムスコアを見積もる必要がある。
しかし、この問題の既存の手法は計算に高価であり、不正確な推定が得られる。
生成モデリングの最近の進歩に触発されて、条件付き変数に基づく時間スコア推定のための新しいフレームワークを導入する。
条件変数を任意に選択することで、クローズド形式の目的関数が実現される。
従来の手法と比較して,本手法は時間スコアの学習を高速化し,課題に対する密度比の推定精度が向上することを示した。
さらに,推定密度比の誤差に関する理論的保証を確立する。
関連論文リスト
- Overcoming Saturation in Density Ratio Estimation by Iterated Regularization [11.244546184962996]
密度比推定のためのカーネル手法のクラスが誤差飽和に悩まされていることを示す。
高速な誤差率を達成するために, 密度比推定における繰り返し正規化を導入する。
論文 参考訳(メタデータ) (2024-02-21T16:02:14Z) - Double Debiased Covariate Shift Adaptation Robust to Density-Ratio Estimation [7.8856737627153874]
重み付けによる共変量シフト適応のための二重頑健な推定器を提案する。
我々の推定器は密度比推定誤差から生じるバイアスを低減する。
特に、密度比推定器または回帰関数が整合である場合、我々の推定器は整合性を保つ。
論文 参考訳(メタデータ) (2023-10-25T13:38:29Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Adaptive learning of density ratios in RKHS [3.047411947074805]
有限個の観測から2つの確率密度の比を推定することは、機械学習と統計学における中心的な問題である。
我々は、再生カーネルヒルベルト空間における真の密度比とモデルの間の正規化ブレグマン偏差を最小化する大規模な密度比推定法を分析する。
論文 参考訳(メタデータ) (2023-07-30T08:18:39Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Out-of-Distribution Detection with Class Ratio Estimation [4.930817402876787]
近年,OOD画像の検出作業において,密度に基づくアウト・オブ・ディストリビューション(OOD)検出は信頼性が低いことが示されている。
本稿では,エネルギーモデルを構築し,異なる基底分布を用いる新しい枠組みの下で,密度比に基づく手法を統合することを提案する。
論文 参考訳(メタデータ) (2022-06-08T15:20:49Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。