論文の概要: EdgeGFL: Rethinking Edge Information in Graph Feature Preference Learning
- arxiv url: http://arxiv.org/abs/2502.02302v1
- Date: Tue, 04 Feb 2025 13:16:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:02:40.838934
- Title: EdgeGFL: Rethinking Edge Information in Graph Feature Preference Learning
- Title(参考訳): EdgeGFL: グラフ機能優先学習におけるエッジ情報の再考
- Authors: Shengda Zhuo, Jiwang Fang, Hongguang Lin, Yin Tang, Min Chen, Changdong Wang, Shuqiang Huang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、非ユークリッドデータを扱う上で大きな利点がある。
多次元エッジ情報を含めることで、GNNモデルの機能性と柔軟性が向上する。
4つの実世界の異種グラフの実験は、提案されたモデルの有効性を示す。
- 参考スコア(独自算出の注目度): 12.767227925026972
- License:
- Abstract: Graph Neural Networks (GNNs) have significant advantages in handling non-Euclidean data and have been widely applied across various areas, thus receiving increasing attention in recent years. The framework of GNN models mainly includes the information propagation phase and the aggregation phase, treating nodes and edges as information entities and propagation channels, respectively. However, most existing GNN models face the challenge of disconnection between node and edge feature information, as these models typically treat the learning of edge and node features as independent tasks. To address this limitation, we aim to develop an edge-empowered graph feature preference learning framework that can capture edge embeddings to assist node embeddings. By leveraging the learned multidimensional edge feature matrix, we construct multi-channel filters to more effectively capture accurate node features, thereby obtaining the non-local structural characteristics and fine-grained high-order node features. Specifically, the inclusion of multidimensional edge information enhances the functionality and flexibility of the GNN model, enabling it to handle complex and diverse graph data more effectively. Additionally, integrating relational representation learning into the message passing framework allows graph nodes to receive more useful information, thereby facilitating node representation learning. Finally, experiments on four real-world heterogeneous graphs demonstrate the effectiveness of theproposed model.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、非ユークリッドデータを扱う上で大きな利点があり、様々な領域で広く適用されており、近年注目されている。
GNNモデルのフレームワークは主に情報伝達フェーズと集約フェーズを含み、ノードとエッジをそれぞれ情報エンティティと伝搬チャネルとして扱う。
しかしながら、既存のほとんどのGNNモデルは、一般的にエッジとノードの特徴の学習を独立したタスクとして扱うため、ノードとエッジの特徴情報の切り離しという課題に直面している。
この制限に対処するために、エッジ埋め込みをキャプチャしてノード埋め込みを支援するエッジ内蔵グラフ特徴選好学習フレームワークを開発することを目的とする。
学習した多次元エッジ特徴行列を利用して、より効率的に正確なノード特徴を捕捉するマルチチャネルフィルタを構築し、非局所構造特性と高次ノード特徴の微細化を実現する。
具体的には、多次元エッジ情報を含めることで、GNNモデルの機能性と柔軟性が向上し、複雑なグラフデータや多様なグラフデータをより効率的に扱えるようになる。
さらに、リレーショナル表現学習をメッセージパッシングフレームワークに統合することで、グラフノードはより有用な情報を受け取ることができ、ノード表現学習が容易になる。
最後に、4つの実世界の異種グラフに関する実験は、提案されたモデルの有効性を示す。
関連論文リスト
- Improving Graph Neural Networks by Learning Continuous Edge Directions [0.0]
グラフニューラルネットワーク(GNN)は、従来、非指向グラフ上の拡散に似たメッセージパッシング機構を採用している。
私たちのキーとなる洞察は、ファジィエッジ方向をグラフのエッジに割り当てることです。
ファジィエッジを持つグラフを学習するためのフレームワークとして,Continuous Edge Direction (CoED) GNNを提案する。
論文 参考訳(メタデータ) (2024-10-18T01:34:35Z) - Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck [5.707725771108279]
本稿では,CGRL (Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck) を用いたノード分類手法を提案する。
提案手法は既存の最先端アルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T05:45:21Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Edge-Featured Graph Attention Network [7.0629162428807115]
エッジ機能付きグラフアテンションネットワーク(EGAT)を提案し、グラフニューラルネットワークの利用をノードとエッジの両方の特徴を持つグラフ上で学習するタスクに拡張する。
モデル構造と学習プロセスを改革することにより、新しいモデルはノードとエッジの機能を入力として受け入れ、エッジ情報を機能表現に組み込むことができ、ノードとエッジの機能を並列かつ相互に反復することができる。
論文 参考訳(メタデータ) (2021-01-19T15:08:12Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。