論文の概要: Improving Generalization Ability for 3D Object Detection by Learning Sparsity-invariant Features
- arxiv url: http://arxiv.org/abs/2502.02322v1
- Date: Tue, 04 Feb 2025 13:47:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:37.099134
- Title: Improving Generalization Ability for 3D Object Detection by Learning Sparsity-invariant Features
- Title(参考訳): 空間不変特徴学習による3次元物体検出の一般化能力の向上
- Authors: Hsin-Cheng Lu, Chung-Yi Lin, Winston H. Hsu,
- Abstract要約: 単一領域における3次元物体検出の一般化能力を向上させる手法を提案する。
1つのソースドメインから空間不変の特徴を学習するために、ソースデータを特定のビームに選択的にサブサンプリングする。
我々はまた、異なる点の雲の密度にBird’s Eye View機能を調整するために、教師学生のフレームワークも使用しています。
- 参考スコア(独自算出の注目度): 21.761631081209263
- License:
- Abstract: In autonomous driving, 3D object detection is essential for accurately identifying and tracking objects. Despite the continuous development of various technologies for this task, a significant drawback is observed in most of them-they experience substantial performance degradation when detecting objects in unseen domains. In this paper, we propose a method to improve the generalization ability for 3D object detection on a single domain. We primarily focus on generalizing from a single source domain to target domains with distinct sensor configurations and scene distributions. To learn sparsity-invariant features from a single source domain, we selectively subsample the source data to a specific beam, using confidence scores determined by the current detector to identify the density that holds utmost importance for the detector. Subsequently, we employ the teacher-student framework to align the Bird's Eye View (BEV) features for different point clouds densities. We also utilize feature content alignment (FCA) and graph-based embedding relationship alignment (GERA) to instruct the detector to be domain-agnostic. Extensive experiments demonstrate that our method exhibits superior generalization capabilities compared to other baselines. Furthermore, our approach even outperforms certain domain adaptation methods that can access to the target domain data.
- Abstract(参考訳): 自律運転では、物体の正確な識別と追跡には3Dオブジェクト検出が不可欠である。
このタスクのための様々な技術の継続的な開発にもかかわらず、ほとんどの領域で顕著な欠点が観察される。
本論文では,単一領域における3次元物体検出の一般化能力を向上する手法を提案する。
主に、単一ソースドメインから、異なるセンサ構成とシーン分布を持つターゲットドメインへの一般化に重点を置いています。
単一ソース領域から空間不変の特徴を学習するために、電流検出器によって決定された信頼スコアを用いて、ソースデータを特定のビームに選択的にサブサンプリングし、検出器にとって最も重要となる密度を識別する。
次に、教師が学習するフレームワークを用いて、異なる点の雲の密度にBird's Eye View(BEV)機能を調整します。
また,特徴量アライメント (FCA) とグラフベースの埋め込み関係アライメント (GERA) を用いて,検出器にドメインに依存しないように指示する。
大規模な実験により,本手法は他のベースラインに比べて優れた一般化能力を示すことが示された。
さらに,本手法は,対象のドメインデータにアクセス可能な特定のドメイン適応手法よりも優れている。
関連論文リスト
- Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
本稿では,GoDiffという新しい単一ドメインオブジェクト検出一般化手法を提案する。
擬似ターゲットドメインデータとソースドメインデータを統合することで、トレーニングデータセットを多様化する。
実験により,本手法は既存の検出器の一般化能力を高めるだけでなく,他の単一領域一般化手法のプラグ・アンド・プレイ拡張として機能することが示された。
論文 参考訳(メタデータ) (2024-12-18T13:03:00Z) - Domain Generalization of 3D Object Detection by Density-Resampling [14.510085711178217]
ポイントクラウドベースの3Dオブジェクト検出は、新しいドメインギャップを持つデータに遭遇する際のパフォーマンス劣化に悩まされる。
対象領域に対する3次元物体検出の一般化性を向上させるためのSDG法を提案する。
本研究では,新しいデータ拡張手法を導入し,その方法論に新しいマルチタスク学習戦略を貢献する。
論文 参考訳(メタデータ) (2023-11-17T20:01:29Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation
in 3D Object Detection [7.489722641968593]
マルチソース3D(MS3D)は、3Dオブジェクト検出における教師なしドメイン適応のための新しい自己学習パイプラインである。
提案するKernel-Density Estimation (KDE) Box Fusion法は,複数のドメインからのボックス提案を融合して擬似ラベルを得る。
MS3Dはドメインシフトに対してより堅牢性を示し、より大きな距離で正確な擬似ラベルを生成する。
論文 参考訳(メタデータ) (2023-04-05T13:29:21Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
周波数スペクトル拡張整合(FSAC)フレームワークを4種類の低周波フィルタで構成する。
最初の段階では、オリジナルおよび拡張されたソースデータを全て利用して、オブジェクト検出器を訓練する。
第2段階では、予測一貫性のための自己学習を行うために、擬似ラベル付き拡張現実とターゲットデータを採用する。
論文 参考訳(メタデータ) (2021-12-16T04:07:01Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。