論文の概要: MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation
in 3D Object Detection
- arxiv url: http://arxiv.org/abs/2304.02431v3
- Date: Tue, 9 May 2023 01:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 15:37:04.864095
- Title: MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation
in 3D Object Detection
- Title(参考訳): MS3D:3次元物体検出における教師なし領域適応のための複数検出器の活用
- Authors: Darren Tsai, Julie Stephany Berrio, Mao Shan, Eduardo Nebot and
Stewart Worrall
- Abstract要約: マルチソース3D(MS3D)は、3Dオブジェクト検出における教師なしドメイン適応のための新しい自己学習パイプラインである。
提案するKernel-Density Estimation (KDE) Box Fusion法は,複数のドメインからのボックス提案を融合して擬似ラベルを得る。
MS3Dはドメインシフトに対してより堅牢性を示し、より大きな距離で正確な擬似ラベルを生成する。
- 参考スコア(独自算出の注目度): 7.489722641968593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Multi-Source 3D (MS3D), a new self-training pipeline for
unsupervised domain adaptation in 3D object detection. Despite the remarkable
accuracy of 3D detectors, they often overfit to specific domain biases, leading
to suboptimal performance in various sensor setups and environments. Existing
methods typically focus on adapting a single detector to the target domain,
overlooking the fact that different detectors possess distinct expertise on
different unseen domains. MS3D leverages this by combining different
pre-trained detectors from multiple source domains and incorporating temporal
information to produce high-quality pseudo-labels for fine-tuning. Our proposed
Kernel-Density Estimation (KDE) Box Fusion method fuses box proposals from
multiple domains to obtain pseudo-labels that surpass the performance of the
best source domain detectors. MS3D exhibits greater robustness to domain shift
and produces accurate pseudo-labels over greater distances, making it
well-suited for high-to-low beam domain adaptation and vice versa. Our method
achieved state-of-the-art performance on all evaluated datasets, and we
demonstrate that the pre-trained detector's source dataset has minimal impact
on the fine-tuned result, making MS3D suitable for real-world applications.
- Abstract(参考訳): 3dオブジェクト検出における教師なしドメイン適応のための新しい自己学習パイプラインであるmulti-source 3d (ms3d) を導入する。
3D検出器の顕著な精度にもかかわらず、それらはしばしば特定のドメインバイアスに過度に適合し、様々なセンサーの設定や環境において最適以下の性能をもたらす。
既存の方法は通常、1つの検出器を対象のドメインに適応させることに重点を置いており、異なる検出器が異なる未知のドメインに対して異なる専門知識を持っているという事実を見落としている。
ms3dは、複数のソースドメインからの異なる事前学習された検出器を結合し、時間情報を組み込んで高品質な擬似ラベルを生成し、微調整する。
提案したKernel-Density Estimation (KDE) Box Fusion法は,複数のドメインからのボックス提案を融合し,最高のソース領域検出器の性能を超える擬似ラベルを得る。
ms3dは領域シフトに対するロバスト性が向上し、より長い距離にわたって正確な擬似ラベルを生成する。
提案手法は,すべての評価データセットに対して最先端の性能を達成し,事前学習した検出器のソースデータセットが微調整結果に最小限の影響を与えることを示した。
関連論文リスト
- DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - MS3D++: Ensemble of Experts for Multi-Source Unsupervised Domain
Adaptation in 3D Object Detection [12.005805403222354]
未知の領域に3D検出器を配置すると、検出率が70-90%低下することが示されている。
我々は,MS3D++を紹介した。MS3D++は3Dオブジェクト検出において,マルチソースな教師なしドメイン適応のための自己学習フレームワークである。
MS3D++は高品質な擬似ラベルを生成し、3D検出器は様々なライダータイプで高い性能を達成できる。
論文 参考訳(メタデータ) (2023-08-11T07:56:10Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
本稿では,3次元物体検出(SSDA3D)のための半改良型領域適応法を提案する。
SSDA3Dはドメイン間適応ステージとドメイン内一般化ステージを含む。
実験の結果,10%のラベル付きターゲットデータしか持たないSSDA3Dは,100%のターゲットラベルを持つ完全教師付きオラクルモデルを上回ることができることがわかった。
論文 参考訳(メタデータ) (2022-12-06T09:32:44Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。