論文の概要: Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.02332v1
- Date: Tue, 04 Feb 2025 14:09:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:13.337716
- Title: Coreset-Based Task Selection for Sample-Efficient Meta-Reinforcement Learning
- Title(参考訳): サンプル効率の良いメタ強化学習のためのコアセットに基づくタスク選択
- Authors: Donglin Zhan, Leonardo F. Toso, James Anderson,
- Abstract要約: モデル非依存型メタ強化学習(MAML-RL)におけるサンプル効率向上のためのタスク選択の検討
勾配空間におけるタスクの多様性に基づいて,タスクの重み付きサブセットを選択する,コアセットベースのタスク選択手法を提案する。
複数のRLベンチマーク問題にまたがるこの傾向を数値的に検証し,LQRベースラインを越えたタスク選択の利点について考察した。
- 参考スコア(独自算出の注目度): 1.2952597101899859
- License:
- Abstract: We study task selection to enhance sample efficiency in model-agnostic meta-reinforcement learning (MAML-RL). Traditional meta-RL typically assumes that all available tasks are equally important, which can lead to task redundancy when they share significant similarities. To address this, we propose a coreset-based task selection approach that selects a weighted subset of tasks based on how diverse they are in gradient space, prioritizing the most informative and diverse tasks. Such task selection reduces the number of samples needed to find an $\epsilon$-close stationary solution by a factor of O(1/$\epsilon$). Consequently, it guarantees a faster adaptation to unseen tasks while focusing training on the most relevant tasks. As a case study, we incorporate task selection to MAML-LQR (Toso et al., 2024b), and prove a sample complexity reduction proportional to O(log(1/$\epsilon$)) when the task specific cost also satisfy gradient dominance. Our theoretical guarantees underscore task selection as a key component for scalable and sample-efficient meta-RL. We numerically validate this trend across multiple RL benchmark problems, illustrating the benefits of task selection beyond the LQR baseline.
- Abstract(参考訳): モデル非依存型メタ強化学習(MAML-RL)における課題選択について検討した。
従来のメタRLは、すべての利用可能なタスクが同等に重要であると仮定しており、大きな類似点を共有するとタスクの冗長性が生じる可能性がある。
そこで本研究では,より多様で多様なタスクを優先して,勾配空間におけるタスクの重み付き部分集合を選択する,コアセットに基づくタスク選択手法を提案する。
このようなタスクの選択は、$\epsilon$-close 定常解を見つけるのに必要なサンプルの数を O(1/$\epsilon$) の係数で減少させる。
その結果、最も関係のあるタスクにトレーニングを集中しながら、目に見えないタスクへの適応を早くする。
ケーススタディでは,タスク選択をMAML-LQR(Toso et al , 2024b)に組み込み,O(log(1/$\epsilon$))に比例して,タスク固有のコストも勾配支配を満足することを示す。
我々の理論的保証は、スケーラブルでサンプル効率の良いメタRLのキーコンポーネントとして、アンダースコアタスク選択を保証します。
複数のRLベンチマーク問題にまたがるこの傾向を数値的に検証し,LQRベースラインを越えたタスク選択の利点を考察した。
関連論文リスト
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
マルコフ決定過程 (MDP) 下でのマルチタスク強化学習 (RL) において, 共有潜在構造の存在は, シングルタスクRLと比較して, サンプル効率に有意な利益をもたらすことが示されている。
このような利点が、部分的に観測可能なMDP(POMDP)やより一般的な予測状態表現(PSR)といった、より一般的なシーケンシャルな意思決定問題にまで拡張できるかどうかを検討する。
提案手法は,全てのPSRに対してほぼ最適ポリシーを求めるための,証明可能なアルゴリズム UMT-PSR を提案し,PSR の合同モデルクラスが有するマルチタスク学習の利点が示されることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:50:28Z) - Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits [11.682678945754837]
マルチタスク学習(MTL)は、関連する補助タスクと共同学習することで、一次タスクの性能を向上させることを目的としている。
これまでの研究では、このようなランダムなタスクの選択は役に立たない可能性があり、パフォーマンスに有害な可能性があることが示唆されている。
本稿では,非定常的マルチアームバンディットに基づくタスクの選択と割り当てを行う手法を提案する。
論文 参考訳(メタデータ) (2023-09-18T14:51:51Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSSは、自己監督型タスク表現学習に基づくコンテキストベースメタ強化学習アルゴリズムである。
MuJoCoとMeta-Worldのベンチマークでは、MoSSはパフォーマンス、サンプル効率(3-50倍高速)、適応効率、一般化の点で先行して性能が向上している。
論文 参考訳(メタデータ) (2023-04-29T15:46:19Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-30T12:32:43Z) - Selecting task with optimal transport self-supervised learning for
few-shot classification [15.088213168796772]
Few-Shot分類は、トレーニングプロセスで利用可能なサンプルはわずかである、という問題を解決することを目的としている。
本稿では,Few-Shot 学習のための類似タスクを選択して学習セットを構築するために,OTTS (Optimal Transport Task Selecting) という新しいタスク選択アルゴリズムを提案する。
OTTSは最適な輸送距離を計算してタスク類似度を測定し、自己監督戦略を通じてモデルトレーニングを完了させる。
論文 参考訳(メタデータ) (2022-04-01T08:45:29Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
本稿では,モデルに依存しないメタラーニング(MAML)を複数のタスク分布から学習するための新しい手法ST-MAMLを提案する。
そこで本研究では,ST-MAMLが2つの画像分類タスク,1つの曲線評価ベンチマーク,1つの画像補完問題,および実世界の温度予測アプリケーションにおいて,最先端の映像分類タスクに適合または優れることを示す。
論文 参考訳(メタデータ) (2021-09-27T18:54:50Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
低次元部分空間と回帰器を交互に学習する簡易交互最小化法(MLLAM)について検討する。
定数部分空間次元に対して、MLLAMはタスクあたり$Omega(log d)$サンプルしか必要とせず、ほぼ最適推定誤差が得られることを示す。
MLLAMと同様の強力な統計的保証を保証する新しいタスクサブセット選択スキームを提案する。
論文 参考訳(メタデータ) (2021-05-18T06:46:48Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
数ショットの分類のためのメタラーニングの鍵となるアイデアは、テスト時に直面した数ショットの状況を模倣することである。
一般化性能を向上させるための適応型タスクサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T03:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。