Test Time Training for 4D Medical Image Interpolation
- URL: http://arxiv.org/abs/2502.02341v1
- Date: Tue, 04 Feb 2025 14:19:16 GMT
- Title: Test Time Training for 4D Medical Image Interpolation
- Authors: Qikang Zhang, Yingjie Lei, Zihao Zheng, Ziyang Chen, Zhonghao Xie,
- Abstract summary: We propose a novel test time training framework which uses self-supervision to adapt the model to a new distribution without requiring any labels.
We conduct experiments on two publicly available 4D medical image datasets, Cardiac and 4D-Lung.
- Score: 7.850323784869965
- License:
- Abstract: 4D medical image interpolation is essential for improving temporal resolution and diagnostic precision in clinical applications. Previous works ignore the problem of distribution shifts, resulting in poor generalization under different distribution. A natural solution would be to adapt the model to a new test distribution, but this cannot be done if the test input comes without a ground truth label. In this paper, we propose a novel test time training framework which uses self-supervision to adapt the model to a new distribution without requiring any labels. Indeed, before performing frame interpolation on each test video, the model is trained on the same instance using a self-supervised task, such as rotation prediction or image reconstruction. We conduct experiments on two publicly available 4D medical image interpolation datasets, Cardiac and 4D-Lung. The experimental results show that the proposed method achieves significant performance across various evaluation metrics on both datasets. It achieves higher peak signal-to-noise ratio values, 33.73dB on Cardiac and 34.02dB on 4D-Lung. Our method not only advances 4D medical image interpolation but also provides a template for domain adaptation in other fields such as image segmentation and image registration.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images [30.503516093226438]
4D medical images represent 3D images with temporal information.
UVI-Net is a framework that facilitates temporal datasets without the need for any intermediate frames.
arXiv Detail & Related papers (2024-04-01T20:25:04Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Medical Image Segmentation with InTEnt: Integrated Entropy Weighting for
Single Image Test-Time Adaptation [6.964589353845092]
Test-time adaptation (TTA) refers to adapting a trained model to a new domain during testing.
Here, we propose to adapt a medical image segmentation model with only a single unlabeled test image.
Our method, validated on 24 source/target domain splits across 3 medical image datasets surpasses the leading method by 2.9% Dice coefficient on average.
arXiv Detail & Related papers (2024-02-14T22:26:07Z) - Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation [14.71883381837561]
Cross-domain distribution shift is a significant obstacle to deploying the pre-trained semantic segmentation model in real-world applications.
Test-time adaptation has proven its effectiveness in tackling the cross-domain distribution shift during inference.
We propose the Visual Prompt-based Test-Time Adaptation (VPTTA) method to train a specific prompt for each test image to align the statistics in the batch normalization layers.
arXiv Detail & Related papers (2023-11-30T09:03:47Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - On-the-Fly Test-time Adaptation for Medical Image Segmentation [63.476899335138164]
Adapting the source model to target data distribution at test-time is an efficient solution for the data-shift problem.
We propose a new framework called Adaptive UNet where each convolutional block is equipped with an adaptive batch normalization layer.
During test-time, the model takes in just the new test image and generates a domain code to adapt the features of source model according to the test data.
arXiv Detail & Related papers (2022-03-10T18:51:29Z) - Implicit field learning for unsupervised anomaly detection in medical
images [0.8122270502556374]
An auto-decoder feed-forward neural network learns the distribution of healthy images in the form of a mapping between spatial coordinates and probabilities over a proxy for tissue types.
Anomalies are localized using the voxel-wise probability predicted by our model for the restored image.
We tested our approach in the task of unsupervised localization of gliomas on brain MR images and compared it to several other VAE-based anomaly detection methods.
arXiv Detail & Related papers (2021-06-09T16:57:22Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.