Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
- URL: http://arxiv.org/abs/2404.01464v1
- Date: Mon, 1 Apr 2024 20:25:04 GMT
- Title: Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
- Authors: JungEun Kim, Hangyul Yoon, Geondo Park, Kyungsu Kim, Eunho Yang,
- Abstract summary: 4D medical images represent 3D images with temporal information.
UVI-Net is a framework that facilitates temporal datasets without the need for any intermediate frames.
- Score: 30.503516093226438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 4D medical images, which represent 3D images with temporal information, are crucial in clinical practice for capturing dynamic changes and monitoring long-term disease progression. However, acquiring 4D medical images poses challenges due to factors such as radiation exposure and imaging duration, necessitating a balance between achieving high temporal resolution and minimizing adverse effects. Given these circumstances, not only is data acquisition challenging, but increasing the frame rate for each dataset also proves difficult. To address this challenge, this paper proposes a simple yet effective Unsupervised Volumetric Interpolation framework, UVI-Net. This framework facilitates temporal interpolation without the need for any intermediate frames, distinguishing it from the majority of other existing unsupervised methods. Experiments on benchmark datasets demonstrate significant improvements across diverse evaluation metrics compared to unsupervised and supervised baselines. Remarkably, our approach achieves this superior performance even when trained with a dataset as small as one, highlighting its exceptional robustness and efficiency in scenarios with sparse supervision. This positions UVI-Net as a compelling alternative for 4D medical imaging, particularly in settings where data availability is limited. The source code is available at https://github.com/jungeun122333/UVI-Net.
Related papers
- Test Time Training for 4D Medical Image Interpolation [7.850323784869965]
We propose a novel test time training framework which uses self-supervision to adapt the model to a new distribution without requiring any labels.
We conduct experiments on two publicly available 4D medical image datasets, Cardiac and 4D-Lung.
arXiv Detail & Related papers (2025-02-04T14:19:16Z) - Scalable Drift Monitoring in Medical Imaging AI [37.1899538374058]
We develop MMC+, an enhanced framework for scalable drift monitoring.
It builds upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models.
MMC+ offers a reliable and cost-effective alternative to continuous performance monitoring.
arXiv Detail & Related papers (2024-10-17T02:57:35Z) - Segmenting Medical Images with Limited Data [7.83073107607804]
We present a semi-supervised, consistency-based approach termed the data-efficient medical segmenter (DEMS)
The DEMS features an encoder-decoder architecture and incorporates the developed online automatic augmenter (OAA) and residual robustness enhancement (RRE) blocks.
Under extreme data shortage scenarios, our DEMS achieves 16.85% and 10.37% improvement in dice score compared with the U-Net and top-performed state-of-the-art method, respectively.
arXiv Detail & Related papers (2024-07-12T11:41:18Z) - Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers [6.262161803642583]
We propose a novel approach to learn procedural features from a very large data cohort of over 16 million interventional X-ray frames.
Our approach is based on a masked image modeling technique that leverages frame-based reconstruction to learn fine inter-frame temporal correspondences.
Experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions.
arXiv Detail & Related papers (2024-05-02T10:18:22Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Self-Supervised Pretraining for 2D Medical Image Segmentation [0.0]
Self-supervised learning offers a way to lower the need for manually annotated data by pretraining models for a specific domain on unlabelled data.
We find that self-supervised pretraining on natural images and target-domain-specific images leads to the fastest and most stable downstream convergence.
In low-data scenarios, supervised ImageNet pretraining achieves the best accuracy, requiring less than 100 annotated samples to realise close to minimal error.
arXiv Detail & Related papers (2022-09-01T09:25:22Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.