Unlocking the power of global quantum gates with machine learning
- URL: http://arxiv.org/abs/2502.02405v2
- Date: Fri, 28 Feb 2025 01:14:18 GMT
- Title: Unlocking the power of global quantum gates with machine learning
- Authors: Vinit Singh, Bin Yan,
- Abstract summary: We study a circuit ansatze composed of a finite number of global gates and layers of single-qubit unitaries.<n>We demonstrate the expressibility of these ansatze and apply them to the problem of ground state preparation for the Heisenberg model and the toric code Hamiltonian.
- Score: 3.9000096678531606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In conventional circuit-based quantum computing architectures, the standard gate set includes arbitrary single-qubit rotations and two-qubit entangling gates. This choice is not always aligned with the native operations available in certain hardware, where the natural entangling gates are not restricted to two qubits but can act on multiple, or even all, qubits simultaneously. However, leveraging the capabilities of global quantum operations for algorithm implementations is highly challenging, as directly compiling local gate sequences into global gates usually gives rise to a quantum circuit that is more complex than the original one. Here, we circumvent this difficulty using a variational approach. Specifically, we study parameterized circuit ansatze composed of a finite number of global gates and layers of single-qubit unitaries. We demonstrate the expressibility of these ansatze and apply them to the problem of ground state preparation for the Heisenberg model and the toric code Hamiltonian, highlighting their potential for offering practical advantages.
Related papers
- Harnessing electron motion for global spin qubit control [44.99833362998488]
Silicon spin qubits are promising candidates for building scalable quantum computers.
delivering microwave control signals locally to each qubit poses a challenge.
We show that the use of our schemes enables single-qubit fidelity improvements up to a factor of 100 compared to the state-of-the-art.
arXiv Detail & Related papers (2025-03-17T03:02:56Z) - Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.<n>We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Compilation of Entangling Gates for High-Dimensional Quantum Systems [2.6389356041253262]
We introduce a complete workflow for compiling any two-qudit unitary into an arbitrary native gate set.
Case studies demonstrate the feasibility of both, the proposed approach as well as the corresponding implementation.
arXiv Detail & Related papers (2023-01-10T19:00:01Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Constructing quantum circuits with global gates [0.0]
A particularly popular gate set in the literature on quantum computing consists of arbitrary single-qubit gates and 2-qubit CNOT gates.
A CNOT gate is however not always the natural multi-qubit interaction that can be implemented on a given physical quantum computer.
This calls for an entirely different approach to constructing efficient circuits.
arXiv Detail & Related papers (2020-12-16T16:29:23Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
We introduce an efficient algorithm that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set.
Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.
arXiv Detail & Related papers (2020-04-09T18:00:01Z) - Universal Gate Set for Continuous-Variable Quantum Computation with
Microwave Circuits [101.18253437732933]
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits.
As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure.
arXiv Detail & Related papers (2020-02-04T16:51:59Z) - Programming a quantum computer with quantum instructions [39.994876450026865]
We use a density matrixiation protocol to execute quantum instructions on quantum data.
A fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state.
The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation.
arXiv Detail & Related papers (2020-01-23T22:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.