論文の概要: Extending SEEDS to a Supervoxel Algorithm for Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2502.02409v1
- Date: Tue, 04 Feb 2025 15:26:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:58:55.534674
- Title: Extending SEEDS to a Supervoxel Algorithm for Medical Image Analysis
- Title(参考訳): 医用画像解析のためのスーパーボクセルアルゴリズムへのSEEDSの拡張
- Authors: Chenhui Zhao, Yan Jiang, Todd C. Hollon,
- Abstract要約: 3D SEEDSは、医療画像解析のための高速で、より良く、そしてオープンソースのスーパーボクセルアルゴリズムである。
10個の臓器にまたがる13個のセグメンテーションタスクにおいて,3D SEEDSと広く使用されているスーパーボクセルアルゴリズムSLICを比較した。
- 参考スコア(独自算出の注目度): 5.199393082272081
- License:
- Abstract: In this work, we extend the SEEDS superpixel algorithm from 2D images to 3D volumes, resulting in 3D SEEDS, a faster, better, and open-source supervoxel algorithm for medical image analysis. We compare 3D SEEDS with the widely used supervoxel algorithm SLIC on 13 segmentation tasks across 10 organs. 3D SEEDS accelerates supervoxel generation by a factor of 10, improves the achievable Dice score by +6.5%, and reduces the under-segmentation error by -0.16%. The code is available at https://github.com/Zch0414/3d_seeds
- Abstract(参考訳): 本研究では,SEEDSスーパーピクセルアルゴリズムを2次元画像から3次元ボリュームに拡張し,医用画像解析のための高速で優れたオープンソーススーパーボクセルアルゴリズムである3次元SEEDSを実現する。
10個の臓器にまたがる13個のセグメンテーションタスクにおいて,3D SEEDSと広く使用されているスーパーボクセルアルゴリズムSLICを比較した。
3D SEEDSはスーパーボクセル生成を10倍加速し、達成可能なDiceスコアを+6.5%向上させ、アンダーセグメンテーション誤差を-0.16%低減させる。
コードはhttps://github.com/Zch0414/3d_seedsで入手できる。
関連論文リスト
- Cross-Dimensional Medical Self-Supervised Representation Learning Based on a Pseudo-3D Transformation [68.60747298865394]
擬似3D変換(CDSSL-P3D)に基づく新しい三次元SSLフレームワークを提案する。
具体的には、2D画像を3Dデータに整合したフォーマットに変換するim2colアルゴリズムに基づく画像変換を提案する。
この変換は2次元および3次元データのシームレスな統合を可能にし、3次元医用画像解析のための相互教師あり学習を容易にする。
論文 参考訳(メタデータ) (2024-06-03T02:57:25Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
本稿では,テキスト・ツー・3Dモデルの設計空間について検討する。
画像生成装置の代わりに映像を考慮し、マルチビュー生成を大幅に改善する。
IM-3Dは,2次元ジェネレータネットワーク10-100xの評価回数を削減する。
論文 参考訳(メタデータ) (2024-02-13T18:59:51Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
本稿では,DreamGaussianを提案する。DreamGaussianは,効率と品質を両立させる新しい3Dコンテンツ生成フレームワークである。
我々の重要な洞察は、UV空間におけるメッシュ抽出とテクスチャ改善を伴う3次元ガウススプラッティングモデルを設計することである。
ニューラル・ラジアンス・フィールドにおける占有プルーニングとは対照的に、3次元ガウスの進行的な密度化は3次元生成タスクにおいて著しく速く収束することを示した。
論文 参考訳(メタデータ) (2023-09-28T17:55:05Z) - SATR: Zero-Shot Semantic Segmentation of 3D Shapes [74.08209893396271]
大規模オフザシェルフ2次元画像認識モデルを用いて3次元形状のゼロショットセマンティックセマンティックセマンティックセグメンテーションの課題について検討する。
本研究では、SATRアルゴリズムを開発し、ShapeNetPartと提案したFAUSTベンチマークを用いて評価する。
SATRは最先端のパフォーマンスを達成し、ベースラインアルゴリズムを平均mIoUの1.3%と4%で上回っている。
論文 参考訳(メタデータ) (2023-04-11T00:43:16Z) - GPU optimization of the 3D Scale-invariant Feature Transform Algorithm
and a Novel BRIEF-inspired 3D Fast Descriptor [5.1537294207900715]
本研究は,大規模な医用画像データからの機械学習を目的として,SIFTアルゴリズムの高効率実装について述べる。
3D SIFTコードの主要な操作は、畳み込み、サブサンプリング、スケールスペースピラミッドからの4Dピーク検出を含むグラフィックス処理ユニット(GPU)上に実装されている。
パフォーマンス改善は、異なる人の3D MRI人間の脳量を用いて、キーポイント検出と画像と画像のマッチング実験で定量化される。
論文 参考訳(メタデータ) (2021-12-19T20:56:40Z) - Comparative Evaluation of 3D and 2D Deep Learning Techniques for
Semantic Segmentation in CT Scans [0.0]
本稿では,3次元CTスキャンにおける立体スタックを用いた深層学習手法を提案する。
本研究では,この3D手法と従来の2D深層学習手法とのセグメンテーション結果,コンテキスト情報保持,推論時間に基づく比較について述べる。
3D技術により、2D技術と比較して推論時間が5倍短縮されます。
論文 参考訳(メタデータ) (2021-01-19T13:23:43Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
本稿では,プロキシタスクの形式で,5種類の自己教師型手法の3次元バージョンを提案する。
提案手法は,未ラベルの3次元画像からニューラルネットワークの特徴学習を容易にし,専門家のアノテーションに必要なコストを削減することを目的としている。
開発したアルゴリズムは、3D Contrastive Predictive Coding, 3D Rotation Prediction, 3D Jigsaw puzzles, Relative 3D patch location, 3D Exemplar Networkである。
論文 参考訳(メタデータ) (2020-06-06T09:56:58Z) - 3DPIFCM Novel Algorithm for Segmentation of Noisy Brain MRI Images [3.3946853660795884]
3DPIFCMは、よく知られたIFCM(Improved Fuzzy C-Means)アルゴリズムの拡張である。
ファジィセグメンテーションを行い、ボクセルの近接によって影響を受けるフィットネス機能を導入する。
3DPIFCMアルゴリズムはPSO(Particle Swarm Optimization)を用いてフィットネス機能を最適化する。
論文 参考訳(メタデータ) (2020-02-05T20:48:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。