論文の概要: TransformDAS: Mapping Φ-OTDR Signals to Riemannian Manifold for Robust Classification
- arxiv url: http://arxiv.org/abs/2502.02428v1
- Date: Tue, 04 Feb 2025 15:53:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:57:32.998647
- Title: TransformDAS: Mapping Φ-OTDR Signals to Riemannian Manifold for Robust Classification
- Title(参考訳): TransformDAS:ロバスト分類のためのリーマン多様体への ^-OTDR 信号のマッピング
- Authors: Jiaju Kang, Puyu Han, Yang Chun, Xu Wang, Luqi Gong,
- Abstract要約: 位相感度光時間領域反射法(Phi-OTDR)は、工学において広く使われている光ファイバーセンシングシステムである。
Phi-OTDRイベント分類のための機械学習アルゴリズムは、データセットのボリュームと品質を必要とする。
この問題に対処するための有望なアプローチの1つは、生成モデルと少数の実世界のデータを組み合わせて既存のデータを拡張することである。
- 参考スコア(独自算出の注目度): 2.845523526282637
- License:
- Abstract: Phase-sensitive optical time-domain reflectometry ({\Phi}-OTDR) is a widely used distributed fiber optic sensing system in engineering. Machine learning algorithms for {\Phi}-OTDR event classification require high volumes and quality of datasets; however, high-quality datasets are currently extremely scarce in the field, leading to a lack of robustness in models, which is manifested by higher false alarm rates in real-world scenarios. One promising approach to address this issue is to augment existing data using generative models combined with a small amount of real-world data. We explored mapping both {\Phi}-OTDR features in a GAN-based generative pipeline and signal features in a Transformer classifier to hyperbolic space to seek more effective model generalization. The results indicate that state-of-the-art models exhibit stronger generalization performance and lower false alarm rates in real-world scenarios when trained on augmented datasets. TransformDAS, in particular, demonstrates the best classification performance, highlighting the benefits of Riemannian manifold mapping in {\Phi}-OTDR data generation and model classification.
- Abstract(参考訳): 位相感度光時間領域反射法({\Phi}-OTDR)は、工学において広く使われている光ファイバーセンシングシステムである。
{\Phi}-OTDRイベント分類のための機械学習アルゴリズムは、データセットのボリュームと品質を必要とするが、現時点では、高品質なデータセットは極めて少ない。
この問題に対処するための有望なアプローチの1つは、生成モデルと少数の実世界のデータを組み合わせて既存のデータを拡張することである。
GANをベースとした生成パイプラインにおける {\Phi}-OTDR特徴と、トランスフォーマー分類器における信号特徴の両方を双曲空間にマッピングし、より効率的なモデル一般化を求める。
以上の結果から,現状のモデルでは,拡張データセットでトレーニングした場合の現実シナリオにおいて,より高度な一般化性能と誤報率の低下が示唆された。
特に TransformDAS は最良の分類性能を示し、 {\Phi}-OTDR データ生成とモデル分類におけるリーマン多様体写像の利点を強調している。
関連論文リスト
- Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
本稿では,分類精度を高めつつ,データ量を大幅に削減する新しいフレームワークを提案する。
本モデルでは,空間特徴解析のための特殊ブロックによって補完されるスペクトル特徴を効率よく抽出するために,双方向逆畳み込みニューラルネットワーク(CNN)を用いる。
論文 参考訳(メタデータ) (2024-11-29T23:32:26Z) - Attention Beats Linear for Fast Implicit Neural Representation Generation [13.203243059083533]
本稿では,局所的注意層(LAL)と大域的表現ベクトルからなる注意型局所INR(ANR)を提案する。
インスタンス固有の表現とインスタンスに依存しないANRパラメータにより、ターゲット信号は連続関数として十分に再構成される。
論文 参考訳(メタデータ) (2024-07-22T03:52:18Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
現在のハイパースペクトル異常検出(HAD)ベンチマークデータセットは、低解像度、単純なバックグラウンド、検出データの小さなサイズに悩まされている。
これらの要因は、ロバスト性の観点からよく知られた低ランク表現(LRR)モデルの性能も制限する。
我々は、複雑なシナリオにおけるHADアルゴリズムの堅牢性を改善するために、新しいHADベンチマークデータセットであるAIR-HADを構築した。
論文 参考訳(メタデータ) (2024-02-23T14:15:58Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - RENs: Relevance Encoding Networks [0.0]
本稿では,遅延空間に先行する自動相対性決定(ARD)を用いて,データ固有のボトルネック次元を学習する新しい確率的VOEベースのフレームワークであるrelevance encoding network (RENs)を提案する。
提案モデルは,サンプルの表現や生成品質を損なうことなく,関連性のあるボトルネック次元を学習することを示す。
論文 参考訳(メタデータ) (2022-05-25T21:53:48Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。