Orientation-aware interaction-based deep material network in polycrystalline materials modeling
- URL: http://arxiv.org/abs/2502.02457v1
- Date: Tue, 04 Feb 2025 16:25:15 GMT
- Title: Orientation-aware interaction-based deep material network in polycrystalline materials modeling
- Authors: Ting-Ju Wei, Tung-Huan Su, Chuin-Shan Chen,
- Abstract summary: Deep material networks (DMNs) have been proposed as efficient surrogate models, yet they fall short of capturing texture evolution.
We propose the orientation-aware interaction-based deep material network (ODMN), which incorporates an orientation-aware mechanism and an interaction mechanism grounded in the Hill-Mandel principle.
Our results show that ODMN accurately predicts both mechanical responses and texture evolution under complex plastic deformation, thus expanding the applicability of DMNs to polycrystalline materials.
- Score: 0.0
- License:
- Abstract: Multiscale simulations are indispensable for connecting microstructural features to the macroscopic behavior of polycrystalline materials, but their high computational demands limit their practicality. Deep material networks (DMNs) have been proposed as efficient surrogate models, yet they fall short of capturing texture evolution. To address this limitation, we propose the orientation-aware interaction-based deep material network (ODMN), which incorporates an orientation-aware mechanism and an interaction mechanism grounded in the Hill-Mandel principle. The orientation-aware mechanism learns the crystallographic textures, while the interaction mechanism captures stress-equilibrium directions among representative volume element (RVE) subregions, offering insight into internal microstructural mechanics. Notably, ODMN requires only linear elastic data for training yet generalizes effectively to complex nonlinear and anisotropic responses. Our results show that ODMN accurately predicts both mechanical responses and texture evolution under complex plastic deformation, thus expanding the applicability of DMNs to polycrystalline materials. By balancing computational efficiency with predictive fidelity, ODMN provides a robust framework for multiscale simulations of polycrystalline materials.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics.
The results indicate that the POD-TANN approach not only offers accuracy reproducing in the studied responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
arXiv Detail & Related papers (2024-08-13T19:08:56Z) - Compositional Representation of Polymorphic Crystalline Materials [56.80318252233511]
We introduce PCRL, a novel approach that employs probabilistic modeling of composition to capture the diverse polymorphs from available structural information.
Extensive evaluations on sixteen datasets demonstrate the effectiveness of PCRL in learning compositional representation.
arXiv Detail & Related papers (2023-11-17T20:34:28Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries.
We present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) for structural analysis of SFRC.
arXiv Detail & Related papers (2023-01-06T22:33:19Z) - A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites [0.0]
In this work, a recurrent deep neural network model is trained to predict the path-dependent elasto-plastic stress response of short fiber reinforced composites.
The model gives very accurate predictions in a computationally efficient manner when compared with independent micromechanical simulations.
arXiv Detail & Related papers (2022-09-27T12:14:15Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.