Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
- URL: http://arxiv.org/abs/2502.02463v1
- Date: Tue, 04 Feb 2025 16:33:12 GMT
- Title: Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
- Authors: George Whittle, Juliusz Ziomek, Jacob Rawling, Michael A Osborne,
- Abstract summary: We introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings.
Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset.
We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces times-from minutes to milliseconds.
- Score: 16.582778766729387
- License:
- Abstract: While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
This paper develops a scalable distributed probabilistic inference algorithm.
It applies to continuous variables, intractable posteriors and large-scale real-time data in sensor networks.
arXiv Detail & Related papers (2023-09-05T22:33:02Z) - Federated Learning as Variational Inference: A Scalable Expectation
Propagation Approach [66.9033666087719]
This paper extends the inference view and describes a variational inference formulation of federated learning.
We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
arXiv Detail & Related papers (2023-02-08T17:58:11Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
This paper investigates the feasibility of employing state-of-the-art probabilistic transformers in Bayesian optimisation.
We observe two drawbacks stemming from their training procedure and loss definition, hindering their direct deployment as proxies in black-box optimisation.
We introduce two components: 1) a BO-tailored training prior supporting non-uniformly distributed points, and 2) a novel approximate posterior regulariser trading-off accuracy and input sensitivity to filter favourable stationary points for improved predictive performance.
arXiv Detail & Related papers (2022-05-27T11:13:17Z) - Deep surrogate accelerated delayed-acceptance HMC for Bayesian inference
of spatio-temporal heat fluxes in rotating disc systems [0.0]
We introduce a deep learning accelerated to methodology to solve PDE-based inverse problems with guaranteed accuracy.
This is motivated by the ill-posed problem inferring a heat-temporal parameter known as the Biot number data.
arXiv Detail & Related papers (2022-04-05T15:09:33Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Adaptive Conformal Inference Under Distribution Shift [0.0]
We develop methods for forming prediction sets in an online setting where the data generating distribution is allowed to vary over time in an unknown fashion.
Our framework builds on ideas from conformal inference to provide a general wrapper that can be combined with any black box method.
We test our method, adaptive conformal inference, on two real world datasets and find that its predictions are robust to visible and significant distribution shifts.
arXiv Detail & Related papers (2021-06-01T01:37:32Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
We propose a novel variational family that allows for retaining covariances between latent processes while achieving fast convergence.
We provide an efficient implementation of our new approach and apply it to several benchmark datasets.
It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
arXiv Detail & Related papers (2020-05-22T11:10:59Z) - Batch Stationary Distribution Estimation [98.18201132095066]
We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions.
We propose a consistent estimator that is based on recovering a correction ratio function over the given data.
arXiv Detail & Related papers (2020-03-02T09:10:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.