Style transfer as data augmentation: evaluating unpaired image-to-image translation models in mammography
- URL: http://arxiv.org/abs/2502.02475v1
- Date: Tue, 04 Feb 2025 16:52:45 GMT
- Title: Style transfer as data augmentation: evaluating unpaired image-to-image translation models in mammography
- Authors: Emir Ahmed, Spencer A. Thomas, Ciaran Bench,
- Abstract summary: Deep learning models can learn to detect breast cancer from mammograms.
However, challenges with overfitting and poor generalisability prevent their routine use in the clinic.
Data augmentation techniques can be used to improve generalisability.
- Score: 0.0
- License:
- Abstract: Several studies indicate that deep learning models can learn to detect breast cancer from mammograms (X-ray images of the breasts). However, challenges with overfitting and poor generalisability prevent their routine use in the clinic. Models trained on data from one patient population may not perform well on another due to differences in their data domains, emerging due to variations in scanning technology or patient characteristics. Data augmentation techniques can be used to improve generalisability by expanding the diversity of feature representations in the training data by altering existing examples. Image-to-image translation models are one approach capable of imposing the characteristic feature representations (i.e. style) of images from one dataset onto another. However, evaluating model performance is non-trivial, particularly in the absence of ground truths (a common reality in medical imaging). Here, we describe some key aspects that should be considered when evaluating style transfer algorithms, highlighting the advantages and disadvantages of popular metrics, and important factors to be mindful of when implementing them in practice. We consider two types of generative models: a cycle-consistent generative adversarial network (CycleGAN) and a diffusion-based SynDiff model. We learn unpaired image-to-image translation across three mammography datasets. We highlight that undesirable aspects of model performance may determine the suitability of some metrics, and also provide some analysis indicating the extent to which various metrics assess unique aspects of model performance. We emphasise the need to use several metrics for a comprehensive assessment of model performance.
Related papers
- Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis.
Deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis.
Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability.
We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset.
arXiv Detail & Related papers (2025-01-29T11:09:50Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain.
We propose a training data augmentation approach based on single-image generative models for the affected class.
Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges.
arXiv Detail & Related papers (2024-05-30T07:02:50Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models.
We advocate for multi-task learning, i.e., training a single model on several different datasets.
We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions.
arXiv Detail & Related papers (2020-04-12T23:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.