Distributional Diffusion Models with Scoring Rules
- URL: http://arxiv.org/abs/2502.02483v1
- Date: Tue, 04 Feb 2025 16:59:03 GMT
- Title: Distributional Diffusion Models with Scoring Rules
- Authors: Valentin De Bortoli, Alexandre Galashov, J. Swaroop Guntupalli, Guangyao Zhou, Kevin Murphy, Arthur Gretton, Arnaud Doucet,
- Abstract summary: Diffusion models generate high-quality synthetic data.
generating high-quality outputs requires many discretization steps.
We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
- Score: 83.38210785728994
- License:
- Abstract: Diffusion models generate high-quality synthetic data. They operate by defining a continuous-time forward process which gradually adds Gaussian noise to data until fully corrupted. The corresponding reverse process progressively "denoises" a Gaussian sample into a sample from the data distribution. However, generating high-quality outputs requires many discretization steps to obtain a faithful approximation of the reverse process. This is expensive and has motivated the development of many acceleration methods. We propose to accomplish sample generation by learning the posterior {\em distribution} of clean data samples given their noisy versions, instead of only the mean of this distribution. This allows us to sample from the probability transitions of the reverse process on a coarse time scale, significantly accelerating inference with minimal degradation of the quality of the output. This is accomplished by replacing the standard regression loss used to estimate conditional means with a scoring rule. We validate our method on image and robot trajectory generation, where we consistently outperform standard diffusion models at few discretization steps.
Related papers
- Single-Step Consistent Diffusion Samplers [8.758218443992467]
Existing sampling algorithms typically require many iterative steps to produce high-quality samples.
We introduce consistent diffusion samplers, a new class of samplers designed to generate high-fidelity samples in a single step.
We show that our approach yields high-fidelity samples using less than 1% of the network evaluations required by traditional diffusion samplers.
arXiv Detail & Related papers (2025-02-11T14:25:52Z) - Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations [53.180374639531145]
Self-Refining Diffusion Samplers (SRDS) retain sample quality and can improve latency at the cost of additional parallel compute.
We take inspiration from the Parareal algorithm, a popular numerical method for parallel-in-time integration of differential equations.
arXiv Detail & Related papers (2024-12-11T11:08:09Z) - Continuous Speculative Decoding for Autoregressive Image Generation [33.05392461723613]
Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts.
speculative decoding has proven effective in accelerating Large Language Models (LLMs)
This work generalizes the speculative decoding algorithm from discrete tokens to continuous space.
arXiv Detail & Related papers (2024-11-18T09:19:15Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Diffusion Models with Deterministic Normalizing Flow Priors [23.212848643552395]
We propose DiNof ($textbfDi$ffusion with $textbfNo$rmalizing $textbff$low priors), a technique that makes use of normalizing flows and diffusion models.
Experiments on standard image generation datasets demonstrate the advantage of the proposed method over existing approaches.
arXiv Detail & Related papers (2023-09-03T21:26:56Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - On Calibrating Diffusion Probabilistic Models [78.75538484265292]
diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks.
We propose a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can be increased.
Our calibration method is performed only once and the resulting models can be used repeatedly for sampling.
arXiv Detail & Related papers (2023-02-21T14:14:40Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.