A Self-Supervised Framework for Improved Generalisability in Ultrasound B-mode Image Segmentation
- URL: http://arxiv.org/abs/2502.02489v1
- Date: Tue, 04 Feb 2025 17:06:41 GMT
- Title: A Self-Supervised Framework for Improved Generalisability in Ultrasound B-mode Image Segmentation
- Authors: Edward Ellis, Andrew Bulpitt, Nasim Parsa, Michael F Byrne, Sharib Ali,
- Abstract summary: We introduce a contrastive SSL approach tailored for B-mode US images, incorporating a novel Relation Contrastive Loss (RCL)
Our approach significantly outperforms traditional supervised segmentation methods across three public breast US datasets.
Our research highlights that domain-inspired SSL can improve US segmentation, especially under data-limited conditions.
- Score: 0.2556201059248933
- License:
- Abstract: Ultrasound (US) imaging is clinically invaluable due to its noninvasive and safe nature. However, interpreting US images is challenging, requires significant expertise, and time, and is often prone to errors. Deep learning offers assistive solutions such as segmentation. Supervised methods rely on large, high-quality, and consistently labeled datasets, which are challenging to curate. Moreover, these methods tend to underperform on out-of-distribution data, limiting their clinical utility. Self-supervised learning (SSL) has emerged as a promising alternative, leveraging unlabeled data to enhance model performance and generalisability. We introduce a contrastive SSL approach tailored for B-mode US images, incorporating a novel Relation Contrastive Loss (RCL). RCL encourages learning of distinct features by differentiating positive and negative sample pairs through a learnable metric. Additionally, we propose spatial and frequency-based augmentation strategies for the representation learning on US images. Our approach significantly outperforms traditional supervised segmentation methods across three public breast US datasets, particularly in data-limited scenarios. Notable improvements on the Dice similarity metric include a 4% increase on 20% and 50% of the BUSI dataset, nearly 6% and 9% improvements on 20% and 50% of the BrEaST dataset, and 6.4% and 3.7% improvements on 20% and 50% of the UDIAT dataset, respectively. Furthermore, we demonstrate superior generalisability on the out-of-distribution UDIAT dataset with performance boosts of 20.6% and 13.6% compared to the supervised baseline using 20% and 50% of the BUSI and BrEaST training data, respectively. Our research highlights that domain-inspired SSL can improve US segmentation, especially under data-limited conditions.
Related papers
- Leveraging Self-Supervised Learning for Fetal Cardiac Planes Classification using Ultrasound Scan Videos [4.160910038127896]
Self-supervised learning (SSL) methods are popular since they can address situations with limited annotated data.
We study 7 SSL approaches based on reconstruction, contrastive loss, distillation, and information theory and evaluate them extensively on a large private US dataset.
Our primary observation shows that for SSL training, the variance of the dataset is more crucial than its size because it allows the model to learn generalisable representations.
arXiv Detail & Related papers (2024-07-31T16:47:21Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
Our research contributes a self-supervised robust machine learning framework, OCT-SelfNet, for detecting eye diseases.
Our method addresses the issue using a two-phase training approach that combines self-supervised pretraining and supervised fine-tuning.
In terms of the AUC-PR metric, our proposed method exceeded 42%, showcasing a substantial increase of at least 10% in performance compared to the baseline.
arXiv Detail & Related papers (2024-01-22T20:17:14Z) - Patch-Level Contrasting without Patch Correspondence for Accurate and
Dense Contrastive Representation Learning [79.43940012723539]
ADCLR is a self-supervised learning framework for learning accurate and dense vision representation.
Our approach achieves new state-of-the-art performance for contrastive methods.
arXiv Detail & Related papers (2023-06-23T07:38:09Z) - SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis [3.1542695050861544]
Deep learning-based supervised methods are widely popular in medical image analysis.
They require a large amount of training data and face issues in generalisability to unseen datasets.
We propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin.
arXiv Detail & Related papers (2023-05-31T21:28:08Z) - Active Learning in Brain Tumor Segmentation with Uncertainty Sampling,
Annotation Redundancy Restriction, and Data Initialization [17.3513750927719]
Deep learning models have demonstrated great potential in medical 3D imaging, but their development is limited by the expensive, large volume of annotated data required.
Active learning (AL) addresses this by training a model on a subset of the most informative data samples without compromising performance.
We compared different AL strategies and propose a framework that minimizes the amount of data needed for state-of-the-art performance.
arXiv Detail & Related papers (2023-02-05T04:45:08Z) - Training Strategies for Improved Lip-reading [61.661446956793604]
We investigate the performance of state-of-the-art data augmentation approaches, temporal models and other training strategies.
A combination of all the methods results in a classification accuracy of 93.4%, which is an absolute improvement of 4.6% over the current state-of-the-art performance.
An error analysis of the various training strategies reveals that the performance improves by increasing the classification accuracy of hard-to-recognise words.
arXiv Detail & Related papers (2022-09-03T09:38:11Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries.
To assist the clinical diagnosis and reduce the tedious workload of image interpretation, developing automated tools for COVID-19 identification with CT image is highly desired.
This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets.
arXiv Detail & Related papers (2020-09-15T11:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.