SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis
- URL: http://arxiv.org/abs/2306.00197v1
- Date: Wed, 31 May 2023 21:28:08 GMT
- Title: SSL-CPCD: Self-supervised learning with composite pretext-class
discrimination for improved generalisability in endoscopic image analysis
- Authors: Ziang Xu, Jens Rittscher, and Sharib Ali
- Abstract summary: Deep learning-based supervised methods are widely popular in medical image analysis.
They require a large amount of training data and face issues in generalisability to unseen datasets.
We propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin.
- Score: 3.1542695050861544
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data-driven methods have shown tremendous progress in medical image analysis.
In this context, deep learning-based supervised methods are widely popular.
However, they require a large amount of training data and face issues in
generalisability to unseen datasets that hinder clinical translation.
Endoscopic imaging data incorporates large inter- and intra-patient variability
that makes these models more challenging to learn representative features for
downstream tasks. Thus, despite the publicly available datasets and datasets
that can be generated within hospitals, most supervised models still
underperform. While self-supervised learning has addressed this problem to some
extent in natural scene data, there is a considerable performance gap in the
medical image domain. In this paper, we propose to explore patch-level
instance-group discrimination and penalisation of inter-class variation using
additive angular margin within the cosine similarity metrics. Our novel
approach enables models to learn to cluster similar representative patches,
thereby improving their ability to provide better separation between different
classes. Our results demonstrate significant improvement on all metrics over
the state-of-the-art (SOTA) methods on the test set from the same and diverse
datasets. We evaluated our approach for classification, detection, and
segmentation. SSL-CPCD achieves 79.77% on Top 1 accuracy for ulcerative colitis
classification, 88.62% on mAP for polyp detection, and 82.32% on dice
similarity coefficient for segmentation tasks are nearly over 4%, 2%, and 3%,
respectively, compared to the baseline architectures. We also demonstrate that
our method generalises better than all SOTA methods to unseen datasets,
reporting nearly 7% improvement in our generalisability assessment.
Related papers
- Comparative Analysis and Ensemble Enhancement of Leading CNN Architectures for Breast Cancer Classification [0.0]
This study introduces a novel and accurate approach to breast cancer classification using histopathology images.
It systematically compares leading Convolutional Neural Network (CNN) models across varying image datasets.
Our findings establish the settings required to achieve exceptional classification accuracy for standalone CNN models.
arXiv Detail & Related papers (2024-10-04T11:31:43Z) - Enhancing Image Classification in Small and Unbalanced Datasets through Synthetic Data Augmentation [0.0]
This paper introduces a novel synthetic augmentation strategy using class-specific Variational Autoencoders (VAEs) and latent space to improve discrimination capabilities.
By generating realistic, varied synthetic data that fills feature space gaps, we address issues of data scarcity and class imbalance.
The proposed strategy was tested in a small dataset of 321 images created to train and validate an automatic method for assessing the quality of cleanliness of esophagogastroduodenoscopy images.
arXiv Detail & Related papers (2024-09-16T13:47:52Z) - PULASki: Learning inter-rater variability using statistical distances to
improve probabilistic segmentation [36.136619420474766]
We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations.
Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure.
Our method can also be applied to a wide range of multi-label segmentation tasks and is useful for downstream tasks such as hemodynamic modelling.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
We study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi)
This imFed-Semi problem is addressed by a novel dynamic bank learning scheme, which improves client training by exploiting class proportion information.
We evaluate our approach on two public real-world medical datasets, including the intracranial hemorrhage diagnosis with 25,000 CT slices and skin lesion diagnosis with 10,015 dermoscopy images.
arXiv Detail & Related papers (2022-06-27T06:51:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.