Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
- URL: http://arxiv.org/abs/2502.02525v1
- Date: Tue, 04 Feb 2025 17:46:34 GMT
- Title: Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
- Authors: Jian Liu, Wei Sun, Hui Yang, Pengchao Deng, Chongpei Liu, Nicu Sebe, Hossein Rahmani, Ajmal Mian,
- Abstract summary: We introduce a diffusion-based paradigm for domain-generalized 9-DoF object pose estimation.
We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective.
We show that our method achieves state-of-the-art domain generalization performance.
- Score: 68.81887041766373
- License:
- Abstract: Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
Related papers
- Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
This paper presents an approach that enables a robot to rapidly learn the complete 3D model of a given object for manipulation in unfamiliar orientations.
We use an ensemble of partially constructed NeRF models to quantify model uncertainty to determine the next action.
Our approach determines when and how to grasp and re-orient an object given its partial NeRF model and re-estimates the object pose to rectify misalignments introduced during the interaction.
arXiv Detail & Related papers (2024-04-02T10:15:06Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - OV9D: Open-Vocabulary Category-Level 9D Object Pose and Size Estimation [56.028185293563325]
This paper studies a new open-set problem, the open-vocabulary category-level object pose and size estimation.
We first introduce OO3D-9D, a large-scale photorealistic dataset for this task.
We then propose a framework built on pre-trained DinoV2 and text-to-image stable diffusion models.
arXiv Detail & Related papers (2024-03-19T03:09:24Z) - Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDA is a method capable of adapting to a nuisance-ridden target domain without 3D or depth data.
We represent object categories as simple cuboid meshes, and harness a generative model of neural feature activations.
We show that our method simulates fine-tuning on a global pseudo-labeled dataset under mild assumptions.
arXiv Detail & Related papers (2024-01-19T17:48:05Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - 6-DoF Stability Field via Diffusion Models [9.631625582146537]
We present 6-DoFusion, a generative model capable of generating 3D poses of an object that produces a stable configuration of a given scene.
We evaluate our model on different object placement and stacking tasks, demonstrating its ability to construct stable scenes.
arXiv Detail & Related papers (2023-10-26T17:59:12Z) - ReorientDiff: Diffusion Model based Reorientation for Object
Manipulation [18.95498618397922]
The ability to manipulate objects in a desired configurations is a fundamental requirement for robots to complete various practical applications.
We propose a reorientation planning method, ReorientDiff, that utilizes a diffusion model-based approach.
The proposed method is evaluated using a set of YCB-objects and a suction gripper, demonstrating a success rate of 95.2% in simulation.
arXiv Detail & Related papers (2023-02-28T00:08:38Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.