Minimax-Optimal Dimension-Reduced Clustering for High-Dimensional Nonspherical Mixtures
- URL: http://arxiv.org/abs/2502.02580v2
- Date: Wed, 05 Feb 2025 03:35:49 GMT
- Title: Minimax-Optimal Dimension-Reduced Clustering for High-Dimensional Nonspherical Mixtures
- Authors: Chengzhu Huang, Yuqi Gu,
- Abstract summary: Nonspherical (anisotropic) noise within each cluster is widely present in real-world data.
We study both the minimax rate and optimal statistical procedure for clustering under high-dimensional nonspherical mixture models.
- Score: 1.4502611532302039
- License:
- Abstract: In mixture models, nonspherical (anisotropic) noise within each cluster is widely present in real-world data. We study both the minimax rate and optimal statistical procedure for clustering under high-dimensional nonspherical mixture models. In high-dimensional settings, we first establish the information-theoretic limits for clustering under Gaussian mixtures. The minimax lower bound unveils an intriguing informational dimension-reduction phenomenon: there exists a substantial gap between the minimax rate and the oracle clustering risk, with the former determined solely by the projected centers and projected covariance matrices in a low-dimensional space. Motivated by the lower bound, we propose a novel computationally efficient clustering method: Covariance Projected Spectral Clustering (COPO). Its key step is to project the high-dimensional data onto the low-dimensional space spanned by the cluster centers and then use the projected covariance matrices in this space to enhance clustering. We establish tight algorithmic upper bounds for COPO, both for Gaussian noise with flexible covariance and general noise with local dependence. Our theory indicates the minimax-optimality of COPO in the Gaussian case and highlights its adaptivity to a broad spectrum of dependent noise. Extensive simulation studies under various noise structures and real data analysis demonstrate our method's superior performance.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
How to cluster data using their low dimensional embedded space is still a challenging problem in machine learning.
In this article, we focus on proposing a joint formulation for both clustering and dimensionality reduction.
Our algorithm is based on a mixture of sparse Gaussian processes, which is called Sparse Gaussian Process Mixture Clustering (SGP-MIC)
arXiv Detail & Related papers (2023-03-23T20:44:36Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous
Data [16.153709556346417]
Clustering is a widely deployed learning tool.
iLA-SDP is less sensitive than EM to and more stable on high-dimensional data.
arXiv Detail & Related papers (2022-09-29T21:03:13Z) - Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model [12.868722327487752]
We propose a low-rank mixture model (LrMM) to treat matrix-valued observations.
A computationally efficient clustering method is designed by integrating Lloyd's algorithm and low-rank approximation.
Our method outperforms others in the literature on real-world datasets.
arXiv Detail & Related papers (2022-07-11T03:16:10Z) - Tight integration of neural- and clustering-based diarization through
deep unfolding of infinite Gaussian mixture model [84.57667267657382]
This paper introduces a it trainable clustering algorithm into the integration framework.
Speaker embeddings are optimized during training such that it better fits iGMM clustering.
Experimental results show that the proposed approach outperforms the conventional approach in terms of diarization error rate.
arXiv Detail & Related papers (2022-02-14T07:45:21Z) - Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model:
A new take on Robust Interpolation [5.98367009147573]
We study the supervised clustering problem under the two-component anisotropic Gaussian mixture model.
We show that in the high-dimensional regime, the linear discriminant analysis (LDA) classifier turns out to be sub-optimal in the minimax sense.
arXiv Detail & Related papers (2021-11-13T05:19:37Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Optimal Clustering in Anisotropic Gaussian Mixture Models [3.5590836605011047]
We study the clustering task under anisotropic Gaussian Mixture Models.
We characterize the dependence of signal-to-noise ratios on the cluster centers.
arXiv Detail & Related papers (2021-01-14T00:31:52Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.