Variational Quantum Approximated Spectral Clustering
- URL: http://arxiv.org/abs/2309.04465v2
- Date: Mon, 31 Mar 2025 17:15:32 GMT
- Title: Variational Quantum Approximated Spectral Clustering
- Authors: Hyeong-Gyu Kim, Siheon Park, June-Koo Kevin Rhee,
- Abstract summary: We propose Variational Quantum Approximated Spectral Clustering (VQASC), which extends quantum distance-based classifier models to the clustering framework.<n>Our approach uses efficient quantum circuit designs whose depth scales sub-quadratically with dataset size, enabling the computation of weighted sums over various matrix representations of an undirected graph.
- Score: 0.6718184400443239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is a fundamental task for analyzing unlabeled data based solely on its underlying distribution. Spectral clustering is a clustering method that represents a dataset as a graph and uses the relationships between data points. However, classical spectral clustering methods incur high computational costs that can scale cubically with the dataset size-as is typical for approaches that involve solving eigenvalue problems. In this work, we propose Variational Quantum Approximated Spectral Clustering (VQASC), which extends quantum distance-based classifier models to the clustering framework. Our approach uses efficient quantum circuit designs whose depth scales sub-quadratically with dataset size, enabling the computation of weighted sums over various matrix representations of an undirected graph. Furthermore, we adopt an empirical risk formulation to reduce the impact of local minima arising from parameterized quantum circuits, and we validate our approach through simulations on real-world datasets.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering [22.421702511126373]
We formulate clustering as estimating underlying communities in the directed block model.
We introduce two efficient and interpretable directed clustering algorithms, a spectral clustering algorithm and a semidefinite programming based clustering algorithm.
arXiv Detail & Related papers (2024-03-28T15:47:13Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
We present a new method for small-to-intermediate scale variational algorithms on noisy quantum processors.
Our scheme shifts the computational burden onto the classical component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor.
arXiv Detail & Related papers (2022-11-02T14:11:25Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
We introduce in this work clustering models based on a total variation (TV) regularization procedure on the cluster membership matrix.
We provide a numerical evaluation of all proposed methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionisation imaging measurement.
arXiv Detail & Related papers (2021-04-25T23:40:41Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Spectral clustering on spherical coordinates under the degree-corrected
stochastic blockmodel [5.156484100374058]
A novel spectral clustering algorithm is proposed for community detection under the degree-corrected blockmodel.
Results show improved performance over competing methods in representing computer networks.
arXiv Detail & Related papers (2020-11-09T16:55:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Spectral Clustering using Eigenspectrum Shape Based Nystrom Sampling [19.675277307158435]
This paper proposes a scalable Nystrom-based clustering algorithm with a new sampling procedure, Centroid Minimum Sum of Squared Similarities (CMS3), and a on when to use it.
Our datasets depends on the eigen spectrum shape of the dataset, and yields competitive low-rank approximations in test compared to the other state-of-the-art methods.
arXiv Detail & Related papers (2020-07-21T17:49:03Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Robust spectral clustering using LASSO regularization [0.0]
This paper presents a variant of spectral clustering, called 1-spectral clustering, performed on a new random model closely related to block model.
Its goal is to promote a sparse eigenbasis solution of a 1 minimization problem revealing the natural structure of the graph.
arXiv Detail & Related papers (2020-04-08T07:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.